Выбрать главу

§ 4. Зеркальное отражение

Перейдем к следующему вопросу, который будет занимать нас до конца главы,— это симметрия при отражении в про­странстве. Проблема заключается в следующем: симметричны ли физические законы при отражении? Можно ее сформулировать и по-другому. Предположим, что мы построили некое устрой­ство, например часы с множеством колесиков, стрелок и пр. Они идут, внутри у них есть устройство для заводки. Посмот­рим теперь на часы в зеркало. Дело не в том, как они выглядят в зеркале. Нет, давайте построим другие часы, в точности такие же, как те первые, отраженные в зеркале. Там, где у первых часов находится винт с правой резьбой, мы поставим винт с левой резьбой, там, где на циферблате стоит цифра «XII», мы на циферблате вторых часов нарисуем «IIX», каждая спиральная пружина закручена в одну сторону у первых часов и в проти­воположную у зеркально отраженных. Когда все будет за­кончено, получатся двое часов, каждые из которых будут точ­ным зеркальным отражением других, хотя заметьте, что и те и другие настоящие физические материальные объекты. Возникает вопрос: а что, если и те и другие часы запущены при одинаковых условиях, если пружины их закручены одинаково туго, будут ли они идти и тикать, как точное зеркальное от­ражение? (Это чисто физический, а вовсе не философский во­прос.) Наша интуиция и наше знание физических законов под­сказывают, что будут.

Мы подозреваем, что по крайней мере в этом случае отраже­ние будет одной из симметрии физических законов, т. е. если заменить «право» на «лево», а все остальное оставить тем же самым, то никакой разницы при этом мы обнаружить не смо­жем. Предположим на минуту, что все это верно. Тогда ника­кими физическими явлениями невозможно различить, где «право», а где «лево», точно так же, как, скажем, никаким фи­зическим опытом невозможно найти абсолютной скорости дви­жения. Таким образом, с помощью каких-то опытов невоз­можно абсолютно определить, что мы понимаем под «правым», как противоположностью «левого», поскольку все физические законы должны быть симметричны.

Разумеется, мир наш не должен быть симметричным. Если, например, взять то, что мы называем «географией», то здесь вполне можно определить, где правая сторона. Пусть мы на­ходимся в Нью-Орлеане и смотрим в сторону Чикаго. Тогда Флорида будет от нас справа (конечно, если мы стоим ногами на Земле!). Так что в географии можно определить, где «право» и где «лево». В любой системе реальное положение не должно иметь ту симметрию, о которой идет речь, вопрос в том — сим­метричны ли законы? Другими словами, противоречит ли фи­зическим законам наличие подобного Земле шара с «левосто­ронней поверхностью» и человеком, подобным нам, смотрящим в сторону города, подобного Чикаго, с места, подобного Нью-Орлеану, но со всем остальным, перевернутым наоборот, так что Флорида у него будет уже с другой стороны? Ясно, что та­кая ситуация не кажется невозможной, физическим законам не противоречит такая замена всего левого на правое.

Еще одно обстоятельство: наше определение «правой» сто­роны не должно зависеть от истории. Иначе было бы очень просто отличить «левое» от «правого» — пойти в магазин зап­частей и наугад взять какой-нибудь болт. Вообще говоря, у нас в руках не обязательно окажется «правый болт», но все же более вероятно, что он будет именно правым, а не левым. Но это вопрос истории, или условностей, или общего положения вещей, а не фундаментальных законов. Ведь кто-то может начать выпускать болты с левой резьбой.

Таким образом, нам нужно поискать какие-то другие явле­ния, где бы «правое» входило более фундаментальным образом. Рассмотрим следующую возможность. Известно, что поляри­зованный свет, пропущенный через сахарный раствор, повора­чивает свою плоскость поляризации. Как мы видели в гл. 33 (вып. 3), плоскость поляризации при определенной концентра­ции сахара поворачивается направо. Казалось бы, мы нашли способ определения «правой стороны», потому что, растворив в воде некоторое количество сахара, мы можем повернуть пло­скость поляризации вправо. Но сахар получается из живых организмов, а если мы сделаем его искусственно, то обнаружим, что он не поворачивает плоскости поляризации. Если в этот искусственный сахар, который не поворачивает плоскости по­ляризации, напустить бактерий (они съедают некоторое коли­чество сахара) и затем отфильтровать их, то обнаружится, что, хотя сахар остался (почти половина первоначального ко­личества), и он поворачивает плоскость поляризации, но теперь уже в другую сторону! Этот факт кажется очень обескураживаю­щим, однако его можно легко объяснить.