Рис. 7.5. Исполнительное устройство на специализированной микросхеме
Драйвер имеет широкий диапазон питающих напряжений 8—23 В, максимальный выходной ток — 1,2 А, встроенную защиту от перегрузок. Вход микросхемы совместим с уровнями ТТЛ. Можно использовать микросхемы, совместимые с уровнями КМОП, например ВА6209 и многие другие. В каждом случае драйвер нужно включать по рекомендованной схеме, приводимой в справочниках.
Логика работы всех микросхем одинакова. При нулевых потенциалах на обоих входах напряжение на двигатель не подается (режим холостого хода). При подаче единичного уровня на один из входов двигатель вращается в соответствующую сторону. Очень полезен режим электрического торможения двигателя путем короткого замыкания его роторной обмотки. Включается этот режим подачей единичных уровней на оба входа драйвера.
Детали и конструкция
Печатные платы рассмотренных устройств не приводятся ввиду простоты их самостоятельного изготовления.
7.2.1. Первый вариант регулятора хода
Основные положения
Логика работы регуляторов хода любого типа одинакова и была рассмотрена по структурной схеме в разделе 1.2.2. Ниже будут рассматриваться только конкретные схемотехнические решения, рассчитанные на входные сигналы со стандартными параметрами, а именно:
♦ амплитуда канальных импульсов — 5 В;
♦ исходная длительность импульса — 1,5 мс;
♦ диапазон изменения длительности командного импульса — 1–2 мс.
Принципиальная схема
На рис. 7.6 приведен вариант схемы регулятора хода, реализованного в основном на транзисторах.
Рис. 7.6. Регулятор хода. Вариант № 1
Устройство предназначено для использования на моделях с низковольтным питанием (5–7 В). Выходные каскады рассчитаны на применение двигателя мощностью до 15–20 Вт.
Канальный импульс положительной полярности, информация о величине команды в котором содержится в длительности Δτ, подается на один из входов временного дискриминатора, собранного на элементах DD1.3, DD1.4, и на вход инвертора DD1.2. Отрицательный импульс с вывода 4 инвертора также подается на дискриминатор и на дифференцирующую цепь C5R4. Короткий отрицательный импульс, соответствующий переднему фронту канального, через развязывающий диод VD2 запускает ждущий мультивибратор, в состав которого входят транзистор VT1, инвертор DD1.1 и времязадающий конденсатор С4.
В исходном состоянии транзистор открыт за счет подачи на его базу положительного потенциала (примерно 0,6 В) через резистор R3 (рис. 7.7, в). На коллекторе, а значит и на входах инвертора DD1.1 низкий потенциал (логический 0), а на выходе — 1. Конденсатор С4 заряжен до напряжения Uc, определяемого положением движка потенциометра R1.
Рис. 7.7. Формирование опорного импульса
Отрицательный импульс с выхода дифференцирующей цепи (рис. 7.7, б), соответствующий переднему фронту канального импульса, запирает транзистор. Потенциал коллектора скачком возрастает до уровня питающего напряжения (рис. 7.7, г), инвертор DD1.1 опрокидывается, на его выходе устанавливается нулевой потенциал, и левая обкладка конденсатора С4 через диод VD1 оказывается подключенной к корпусу. Отрицательное напряжение с правой обкладки прикладывается к базе транзистора, удерживая его в запертом состоянии (рис. 7.7, в).
Конденсатор С4 начинает перезаряжаться по экспоненциальному закону по цепи: плюс источника питания — подстроечный резистор R3 — конденсатор С4. Когда напряжение на нем достигнет напряжения отпирания транзистора (примерно 0,6 В), произойдет обратное опрокидывание схемы, и на коллекторе транзистора будет сформирован положительный импульс, длительность которого τ0 определяется как исходным напряжением на конденсаторе С4, так и постоянной времени заряда цепи С4-R3. Этот импульс и его инвертированная копия с вывода 3 DD1.1 подаются на оставшиеся входы временного дискриминатора.
Читателю будет легко самостоятельно убедиться, что импульс разностной длительности Δτ появится на выводе 10 дискриминатора — если длительность пришедшего канального импульса τк меньше длительности ждущего мультивибратора τ0, и на выводе 11 — в противном случае. Полярность разностных импульсов в обоих случаях положительна.