Выбрать главу

Смена предмета профессиональных размышлений дает нужную дистанцию, чтобы было «издалека виднее».

Автор не рассказал лишь о своем инструменте, который успешно служит и в противоракетном деле, и в финансовом анализе.

Это так называемое исследование операций: методы создания математических моделей сложных практических ситуаций неопределенными – игровыми – факторами.

Одна из таких ситуаций известна каждому – это игра в крестики- нолики. Девятиклеточный вариант для младшеклассников быстро истощает свой игровой потенциал, даже без применения методов исследования операций, когда выясняется, что если играют асы, ничья гарантирована. Но если у вас есть основание предполагать, что ваш противник – салага, можно и попробовать.

В студенческие годы знакомятся с более продвинутой версией – бесконечным клетчатым полем, на котором, чтобы победить, надо выстроить в ряд пять крестиков или ноликов. Эта версия крестиков- ноликов способна затмить и не очень скучную лекцию. И здесь без исследования операций настоящим асом не станешь. Представим себе теперь, что крестики-нолики можно ставить по всему земному глобусу, что каждый крестик стоит миллиард долларов, бюджеты противников ограничены вполне конкретными величинами, что время на ответный ход ограничено, что имеются некоторые сведения о том, как противник намеревается пойти, но эти сведения могут оказаться и дезинформацией. Добавим еще, что следствием выигрышной последовательности крестиков может быть один большой крест или, лучше сказать, ноль глобального масштаба, и мы получим нечто вроде ракетно-ядерного соревнования в годы холодной войны. Тут уж без исследований операций просто не выжить. Результаты этих исследований докладывались политическим лидерам и обсуждались ими с глазу на глаз. И эти результаты были не меньшим вкладом в дело мира, чем демонстрации и петиции непрофессиональных защитников мира.

В конце 40-х – начале 50-х годов прошлого века – после появления ядерного оружия и баллистических ракет – стало ясно, что их сочетание даст своего рода «абсолютное» оружие, неуязвимое и наносящее огромный ущерб противнику. Угроза создания столь мощного наступательного оружия, естественно, поставила вопрос о средствах обороны от него – о противоракетной обороне.

Чтобы понять сложность этой задачи, сравним ее с созданием зенитно-ракетного оружия, первые образцы которого появились как раз в начале 50-х годов.

Самолет имеет в десять – двадцать раз большие размеры, чем боеголовка, отделяемая от баллистической ракеты. С помощью специальных покрытий «заметность» боеголовки для радиолокатора можно снизить еще в пять – десять раз. Но это означает, что обнаружить боеголовку в сто раз сложнее, чем самолет.

Скорость самолета не превышает одного километра в секунду. Поэтому если он обнаружен на дальности 200 километров, то для его поражения на дальности 100 километров достаточно иметь зенитную ракету примерно с такой же скоростью. Боеголовка межконтинентальной баллистической ракеты (МБР) имеет скорость около семи километров в секунду. Чтобы ее поразить на той же дальности, необходимо либо иметь противоракету с такой же скоростью (что совершенно нереально), либо создать противоракету со скоростью около трех километров в секунду (что очень непросто), но увеличить дальность обнаружения до 300 – 350 километров.

Кроме того, в нашем примере зенитная ракета сближается с целью со скоростью два километра в секунду, а противоракета – десять километров в секунду. Это означает, что противоракета должна значительно быстрее корректировать свое движение, чтобы попасть в цель. А следовательно, необходимо применять куда более сложные системы управления.

Самолет, в сушности, очень уязвимая цель: попадание в него нескольких десятков осколков с большой вероятностью повредит органы управления, топливные системы или поразит экипаж. Боеголовка рассчитана на огромные механические и тепловые перегрузки при входе в атмосферу, поэтому поразить ее гораздо труднее.