Выбрать главу

Так выглядел первый твердотельный усилитель (вверху)

На правом снимке — авторы эпохального изобретения: Шокли (сидит), Бардин (слева) и Бриттен (справа)

Недавно ученые из лаборатории «Белл-телефон» изготовили «самый миниатюрный работающий транзистор» — его поперечный размер 60 нанометров, это всего-навсего длина цепочки из 180 атомов. Этот транзистор в четыре раза меньше самого маленького из ранее созданных, он успешно работает и показывает рекордные величины усиления. Потребление энергии у него в сто раз меньше, чем у современных транзисторов. И это хорошая новость.

Но вместе с тем есть и плохая: исследователи обнаружили, что идет туннелирование электронов через подложку, отделяющую канал проводимости от управляющей сетки. Пока оно не влияет на протекающий ток, но надо тщательнее изучить его последствия. По мнению руководителя работ Стивена Хилениуса, дальнейшее уменьшение параметров невозможно: «Похоже, мы сделали первый из последнего поколения транзисторов».

В чем причина такого пессимизма? Да все в тех же названных проблемах. Прежде всего — в росте локальных значений электрического поля, который неизбежно сопровождает миниатюризацию. При комнатной температуре электроны движутся так же, как и под действием напряжения в 0,026 вольт. Эта величина называется «тепловым напряжением». Поэтому управляющий сигнал должен быть заметно больше, чтобы преодолеть случайные колебания. Для транзисторов на основе кремния характерные величины подаваемых напряжений — от половины вольта до вольта. Даже такое небольшое напряжение, приложенное на очень малых расстояниях, порождает огромные электрические поли (напряженность поля равна напряжению, деленному на расстояние) и может привести к пробою воздуха, что, естественно, нарушит работу прибора. Нынешние транзисторы уже работают на пределе такого пробоя.

Миниатюризация увеличивает тепловыделение на каждый квадратный сантиметр. Причина чисто геометрическая: размеры проводов уменьшаются в одном направлении, а площадь кристалла сверхбольшой интегральной схемы (чипа) — в двух. Современные устройства выделяют до 30 ватт на квадратный сантиметр, это аналогично нагреву вещества до 1200 градусов, в десять раз выше кухонной скороварки. Конечно, подобного перегрева допускать нельзя ни в коем случае, поэтому разработано множество технологий охлаждения, которые, к сожалению, сильно удорожают стоимость чипов.

Следующая сложность связана с промышленным производством транзисторов. Их выжигают на подложках излучением, потом различные химические реакции доводят дело до конца. Но излучение трудно сфокусировать на большой площади, температура подложки может слегка меняться — это приводит к незначительным вариациям свойств разных транзисторов, что недопустимо. Причем с уменьшением размеров все сложности возрастают.

Возрастает стоимость устройств, создающих выжигающее излучение, да и поддержки подложек должны быть все более точными. Контроль качества становится сложной и дорогостоящей процедурой.

Чтобы создавать новые и все более миниатюрные чипы, совершенно необходимо просчитывать конструкцию на компьютере. Раньше движение электронов по проводнику описывалось простыми законами электричества, но теперь провода стали столь миниатюрными, что электроны движутся по ним не устойчивым потоком, а случайными толчками. Их просто невозможно просчитать с требуемой точностью, поэтому резко усложняется и процесс разработки новых чипов.

Как же быть? Что ждет нас впереди?

Размышления о будущем транзистора заставляют нас обратиться к его триумфальному полувековому шествию. Оно не было случайным. По сравнению с предшествующими вакуумными лампами транзисторы были простыми, дешевыми и эффективными. «Потомкам» транзистора придется очень нелегко, поскольку его надо будет превосходить сразу по нескольким совершенно разным параметрам.

Давно уже ведутся поиски «световых» альтернатив транзистору. Свет хорош тем, что фотоны не взаимодействуют друг с другом — нет сильных полей, нет перегрева и прочих сложностей транзистора. Но есть у него и свой минус: взаимодействие сигналов — существенная деталь работы любого электрического контура.

Свет все равно придется превращать в электричество, а это — целый комплекс новых проблем. Впрочем, об оптических вариантах транзисторов разговор еще впереди.

Итак, ситуацию трудно назвать оптимистичной: виден конец эпохи полупроводниковых транзисторов и нет им достойной замены. Однако в науке часто бывает так, что тупиковые ситуации приводят к революционным изменениям и триумфальным находкам. Не забывайте, что транзисторы «убыстряются» и уменьшаются в конечном счете для того, чтобы наши дети носили в кармане школьного ранца электронную копию всех книг Ленинской библиотеки и могли с помощью карманного калькулятора запросто обыграть Гарри Каспарова.