Двигаясь в кристаллической решетке в виде тока и сталкиваясь, как мы говорили, с атомами решетки, отдельные электроны то и дело рассеиваются в стороны. Это рассеивание электронов и есть сопротивление току. Но при этом происходит еще одно интересное явление. Так как электрон, приближаясь к атому, испытывает воздействие его магнитного поля, электронный спин каким-то образом ориентируется относительно этого поля. Оказывается, летя дальше, этот рассеянный электрон может передать свою ориентацию какому-нибудь другому атому решетки и в результате ориентировать его магнитное поле параллельно полю первого атома. Это параллельное выстраивание атомных полей именуется «магнитным спариванием», и, как мы видим, важнейшую роль в нем играют электроны, потому что именно они передают магнитное воздействие от атома к атому.
Оказывается — и именно это открыли Ферт и Грюнберг, — электроны способны передавать такое магнитное воздействие не только от атома к атому, но и от целого слоя ферромагнетика к другому слою. Благодаря этой передаче магнитное поле одного слоя может сориентироваться параллельно магнитному полю другого. Чтобы получить этот эффект, нужно два слоя ферромагнетика разделить прослойкой какого-нибудь неферромагнитного металла. Тогда можно намагнитить один слой как целое в одном направлении, а другой — в противоположном. Если потом пропустить по всему этому «сэндвичу» ток, то электроны в ходе своего движения начнут переходить из одного слоя в другой и очень быстро сделают их намагниченности параллельными, то есть произведут магнитное спаривание слоев.
Рисунки Н. Ершова
Нужно, однако, оговориться, что такое спаривание произойдет лишь в том случае, если электроны смогут достаточно легко проходить через прослойку, а это требует, чтобы ее кристаллическая решетка была достаточно близка к кристаллической решетке ферромагнетика. Таким сходством обладают, например, железо и хром: решетки у обоих простые кубические, а расстояния между атомами железа в его решетке примерно такое же, как между атомами хрома в его решетке. Но есть и второе ограничение. Толщина прослойки должна быть достаточно малой, потому что в противном случае электроны рассеются на атомах самой прослойки и не передадут во второй слой никакого воздействия от первого. Это условие выполнится, если толщина прослойки будет меньше длины свободного (без рассеивания) пробега электронов. А это значит, что прослойка должна иметь толщину не больше, чем несколько (2—3) атомных слоев, то есть быть нанометровой.
При выполнении обоих этих требований магнитное спаривание двух слоев «сэндвича» произойдет, и оказывается, что именно это тотчас вызывает появление желанного эффекта ГМР. Чтобы убедиться в этом, представим себе, что сначала два слоя нашего «сэндвича» намагничены в противоположных направлениях. Поскольку у электронов есть «спин», то есть своя магнитная стрелка, они в каждом слое разделяются на две группы: те, у которых спин (магнитная стрелка) имеет направление «ап», то есть параллелен намагниченности данного слоя, и те, у которых он «даун», то есть антипараллелен. Соответственно и электрический ток в каждом слое разделится на два тока — ток ап-электронов и ток даун-электронов. Так как атомы будут по-разному рассеивать электроны каждой из групп, сопротивление слоя прохождению аптока и даун-тока будет разное. Полное сопротивление слоя будет складываться из этих двух сопротивлений.
А суммарное сопротивление всего «сэндвича» легко подсчитать по школьным формулам сопротивления системы двух параллельных проводников.
Теперь посмотрим, что получится, если мы начнем протягивать наш «сэндвич» над какой-нибудь ячейкой жесткого компьютерного диска. Такая ячейка, как мы говорили в самом начале, имеет некоторую небольшую намагниченность. Поэтому она будет играть роль внешнего магнитного поля по отношению к обоим ферромагнитным слоям. Это внешнее поле прежде всего заставит весь первый, ближайший к нему слой намагнититься в параллельном ему направлении. Затем с помощью электронов, проходящих через прослойку, произойдет магнитное спаривание слоев, и второй, дальний слой установится параллельно первому. Но вот какая штука — оказывается, это изменение ориентации, вызванное магнитным спариванием, немедленно вызовет изменение суммарного сопротивления.
Дело в том, что в исходном состоянии ап-электрон, переходивший из первого слоя во второй, становился там, понятно, даун-электроном, а теперь он так и останется ап-электроном. И то же произойдет с даун-электроном, переходящим из первого слоя во второй. А подсчет по тем же школьным формулам немедленно показывает, что эта новая ситуация изменяет полное сопротивление каждого слоя ап- и даун-токам в нем, а значит — и суммарное сопротивление всей системы в целом по сравнению с тем случаем, когда слои были намагничены противоположно. Тот, кто потрудится произвести эти несложные расчеты, легко убедится, что это изменение сопротивления будет тем больше, чем больше разница в сопротивлении ферромагнетика прохождению ап- и даун-токов (точнее, квадрату этой разницы).