Изготовление зеркала с помощью метаматериалов
Однако искусственные метаматериалы обладают куда более широким диапазоном технически важных свойств, чем опал. Так, фотонные кристаллы благодаря наличию в них запрещенных (и разрешенных) фотонных зон могут служить светопроводниками, светоизоляторами и даже светополупроводниками. В первых двух качествах они позволяют (это уже подтверждено экспериментами) сжать световой пучок в очень узком световоде и передавать его на очень большие расстояния практически без потерь энергии (причем эти тончайшие световоды могут еще и изгибаться под очень большими углами, что невозможно в обычных световодах). Они могут также служить материалом для зеркал с большим отражением света и малыми потерями на его поглощение. В качестве световых полупроводников их мечтают использовать в будущих квантовых компьютерах вместо обычных электронных полупроводников. Необходимость в такой замене становится все острее, так как растущая мощность обычных компьютеров приводит к тому, что при большой скорости (частоте) передачи информации с помощью электронов возникают большие потери энергии на нагрев. Между тем кванты света (фотоны) уже исходно имеют огромную частоту. «Левые» метаматериалы, как уже говорилось, сулят невидимость во всем оптическом диапазоне (хотя практический путь к этому еще очень далек), а благодаря своей сверхдифракционной разрешающей способности позволяют намного теснее записывать информацию на DVD и делать много более миниатюрные электронные схемы, изготовляемые методом оптической литографии.
Разумеется, и невидимость, и суперлинзы, и все «левые» и метаматериалы вообще — это наноэффекты и наноустройства, иными словами — это часть того, что сегодня объединяет в широком понятии «нанотехнология». Конечно, у нее есть и десятки других направлений поиска, например, разработка сверхпрочных и легких материалов из углеродных нанотрубок или создание наночастиц, способных вносить нужные вещества и даже приборы наноразмера внутрь организма (так, недавно было сообщено, что таким способом ученые собираются в ближайшее время измерять электропотенциал внутри живых клеток!). Сегодня все это — многомиллиардный научный бизнес. Область метаматериалов и, в частности, фотонных кристаллов — одно из самых многообещающих направлений в нанотехнологии, и мы еще наверняка будем не раз говорить о новых удивительных достижениях в этой области.
ВО ВСЕМ МИРЕ
Японское агентство исследований космоса (JAXA) планирует к 2030 году развернуть на геостационарной орбите (на высоте 36 000 километров над поверхностью Земли) систему сбора солнечной энергии Space Solar Power System (SSPS). Спутники, входящие в состав SSPS, будут оснащены солнечными батареями для накопления энергии и ее передачи на «приемники», расположенные на Земле, посредством микроволн или лазерной технологии.
В этом году начнется тестирование системы микроволновой передачи энергии. В Хоккайдо будет установлена передающая антенна диаметром 2,4 метра, которая пошлет микроволновый пучок лучей принимающей антенне, установленной на расстоянии 50 метров. Затем волны будут преобразованы в электроэнергию для питания небольшого домашнего обогревателя. Ученые надеются, что в ходе эксперимента будут получены важные данные, которые позволят создать передающую систему большего размера и мощности.
Как ожидается, орбитальная станция будет осуществлять передачу на частотах, работоспособность которых не зависит от погодных условий, 2,45 и 5,8 Гигагерц. В конечном итоге, JAXA планирует построить наземную электростанцию мощностью около одного Гигаватта (достаточно для питания 500 тысяч домов).
Команда, состоящая из членов экипажей австралийского судна Aurora Australis, французского L'Astrolabe и японского Umitaka Maru, погружаясь на тысячеметровую глубину, обследовала так называемый Южный океан, омывающий Антарктиду. Специалисты провели видеосъемку морского дна, обнаружив подводные горы и долины, простирающиеся на тысячи километров. Чуть ли не на каждом дюйме дна можно было увидеть многообразную флору и фауну.