— Я думаю, что нужно прежде всего открывать дополнительные специальные кафедры в разного рода вузах — физических, химических, материаловедческих, медицинских и биологических. Хотя понятно, что и в традиционном образовательном русле эти вещи не оставались в стороне — изучали атомную физику, различные способы манипулирования атомами. Я бы этот процесс дополнил еще тем, что надо специально готовить менеджеров для науки, то есть квалифицированных специалистов, которые сумеют инновационную цепочку довести до товара. Иначе этим приходится заниматься самим ученым, поскольку без специальных знаний даже широко эрудированному бизнесмену такое не под силу.
— Это очевидный факт на сегодня? Ведь долгое время складывалось впечатление об обратном.
— Не знаю, насколько широким процессом это стало, но, по крайней мере, в Дубненском университете таких специалистов стали готовить, в других вузах тоже — я думаю, процесс пошел. Еще — необходимо восполнить пробел, который сегодня существует в образовательной литературе. Вот недавно вышла подготовленная учеными МГУ интересная «Азбука по нанотехнологиям». Мы, глядя на это, тоже решили выпустить книгу, которая называется «Ядерная физика и нанотехнологии».
— Итак, подводя промежуточный итог.
— Сейчас необходимо решение двух проблем. С одной стороны, формирование тех правил игры, которые позволят связать звенья цепочки «образование — наука — инновационные проекты — промышленность», а с другой — нам, самим ученым, настраиваться на конструктивный лад, понимая, что мы можем и должны принимать участие в процессе инновационного развития России. И будем все же оптимистами...
Материал подготовила О. Тарантина
Артем Коваленко
Зачем оно нам, нано?
В скором будущем я заканчиваю факультет наук о материалах Московского государственного университета имени М.ВЛомоносова. Хотел бы поделиться некоторыми соображениями по поводу той области знаний, с которой я собираюсь связать свою будущую жизнь, а именно «нанонаукой».
Пока писал эту статью, много размышлял, какое слово являлось бы наиболее подходящим для того раздела науки (науки, а не технологии), который привлекает сейчас такое большое количество молодых ученых.
В английском языке есть слово «nano-science», однако русского аналога я почему-то ни разу не слышал. Гораздо чаще встречается слово «нанотехнология».
Так что же, нано — это наука или технология?
Давайте попробуем разобраться, как же так получилось, что объекты размером порядка нескольких нанометров привлекли к себе такое внимание. Первым человеком, получившим наноматериал, был наш далекий предок, homo sapiens. К сожалению, он не знал, что сажа (продукт процесса горения при недостатке кислорода) может представлять большой интерес благодаря содержащимся в ней наночастицам углерода, которые являются в настоящий момент предметом исследования многих ученых. Но даже если бы нашему предку сказали об этом, думаю, он все равно бы не придал этому большого значения, потому что в его время наночастицы не могли нигде применяться.
Получением сверхтонких порошков также занимались задолго до формулировки Ричардом Фейнманом основных идей нанонауки, они были нужны в катализе, изучались в коллоидной химии (в виде суспензий). Ученые знали достаточно много о химических свойствах маленьких частиц вещества, об их повышенной реакционной способности, склонности к агрегации — слипанию под действием поверхностных сил и диффузии. Однако никому и в голову не приходило, какие разительные перемены в физических свойствах частиц могут происходить при уменьшении их размера до нанометрового. Почему? Потому что никто не мог измерить эти свойства: для нанообъектов нужны «наноприборы».
Но прошло время, и некоторые ученые поняли, что на микроуровне наш мир гораздо сложнее, чем в макромасштабе, в нем происходят различные «квантовые чудеса», такие, как квантование энергетических спектров, размазывание «области нахождения» частиц, туннелирование и так далее. О них люди узнавали только по косвенным признакам. Два принципа неопределенности Гейзенберга будто охраняли вход в ворота наномира молекул и атомов, давая исследователям только издали любоваться тем, что за этими воротами творилось. Однако каким-то фантастическим образом, будто подгоняя под ответ, некоторым энтузиастам удалось создать науку, «объясняющую» большинство экспериментальных фактов, относящихся к молекулам и атомам. Это была квантовая физика. Но у нее был один огромный недостаток — как только речь начинала идти не об отдельных молекулах и атомах, а о более крупных частицах вещества, уравнения квантовой физики становились нерешаемыми, порой даже приближенно и даже с помощью ЭВМ. Дополнительные трудности возникли вследствие отсутствия — на тот момент — экспериментальных данных по таким объектам. Для начала нужно было получить и исследовать их, а потом уже строить новые теории и модели.