Выбрать главу

В самом скором будущем нас ожидает нашествие всевозможных механизмов, размером меньше пылинки. Некоторые из них, вполне возможно, смогут путешествовать по кровеносным сосудам человека.

Большинство микромеханизмов изготавливается точно таким же образом, что и микропроцессоры,— способом фотолитографии. Ультратонкие слои кремния, оксида кремния или металла окрашиваются веществом, называемым фоторезист, пластине придается желаемая форма, а затем ее поверхность экспонируется, что химически изменяет фоторезист. Неизменные участки фоторезиста затем подвергаются травлению и выводятся из, скажем, электронной схемы. Путем вытравления «приносимых в жертву» слоев оксида кремния инженеры могут создавать структуры, внизу которых существует зазор, например, консольную «балку», нависающую над углублением в кремниевой пластине, или поворотный зубец.

Именно такой процесс позволяет достаточно просто наладить поточное производство микроэлектромеханических систем. И поэтому они дешевы. Например, стоимость производства одного акселерометра микромасштаба поточного производства стоит около десяти долларов, а его большой, традиционный аналог уже обходится в сто раз дороже.

Несмотря на то что пока никому не пришло в голову использовать микромашины для изготовления микророботов, они широко применяются в устройствах, которые измеряют силу и давление, особенно если необходимо максимально уменьшить их размер и вес. Так, например, прибор для измерения кровяного давления фирмы «Lucas Nova Sensor» имеет в поперечнике всего 700 микрометров и крепится к заполненному солью катетеру, вставляемому в кровеносный сосуд. Немецкая компания «Microparts» тоже работает на рынке медицинских приборов и разработала ингалятор, в котором при помощи микроустройств для больных астмой лекарство распыляется капельками величиной менее 5 микрометров.

В то время как микросистемы широко применяются в датчиках, микродвигатели или микронасосы находятся на стадии освоения. Кроме нескольких узких областей, приводы на основе мнкротехнологии все еще исключение из правил.

Одной из таких специализированных областей применения новой технологии является манипуляция светом. В цифровом светопроцессоре фирмы «Texas instruments» (элементе проекторов и больших телевизоров) на микросхеме размером полтора на один сантиметр находится около пятиста тысяч алюминиевых зеркал, каждое из которых может двигаться независимо и управляется микромеханизмами. Используя при стандартных разрешениях цифровой светопроцессор, у которого нет строк развертки и видимых элементов изображения, можно получить изображение намного лучшее, чем в телевизорах с электронно-лучевой трубкой.

Еще одна впечатляющая область применения микроприводов — управление масштабным воздействием малых возмущений. Крыло самолета, например, создает и изменяет вихревые потоки во время полета. Микроустройства могут обнаруживать и видоизменять эти завихрения, используя небольшие закрылки, способные мгновенно опускаться. Набор таких приспособлений вполне способен изменить воздушный поток, создаваемый всем крылом.

Несмотря на близкое родство микроэлектроники и микромеханизмов их отношения сейчас выглядят, скорее как несчастный брак. Например, отдельные компоненты микромеханизмов — миниатюрные зубцы, необходимо подвергать высокотемпературной обработке. Без такой обработки они «заворачиваются, как картофельные чипсы», уверяет Пол Макуортер, руководитель отдела интеллектуальных микросистем Национальной лаборатории Сацдия, штат Нью-Мексико, одного из основных центров разработок в области микроэлектромеханических систем. Но при обработке почти готовых микроэлектронных схем в условиях высоких температур они разрушаются, так как плавятся алюминиевые соединения и выводятся химические примеси, добавляемые к полупроводникам, чтобы изготовить транзисторы и другие микродетали.

Макуортер и его коллеги разработали новую технологию, которая поможет решить эту проблему. Проложив «траншею» в кремниевой пластине, они построили микромеханизм внутри нее, а затем подвергли пластину тепловой обработке. После чего заполнили желобок двуокисью кремния до выравнивания поверхности. Затем изготавливается микроэлектронная часть, а в самом конце цикла оксид кремния вытравляется, и механическая часть выходит на поверхность.