Особую группу представляют композитные материалы, межслойные связи в которых создаются за счет вискеризации волокон. Процесс вискеризации представляет собой процесс выращивания (закрепления) нитевидных кристаллов (вискеров) на поверхности армирующих волокон преимущественно нормально к поверхности, как это схематично показано на рис. 19. Нитевидные кристаллы — вискеры, обладают высокой удельной прочностью и жесткостью. Их можно вальцевать, разрезать, обрабатывать без заметного снижения прочностных свойств. Существенным недостатком нового класса армирующих материалов — нитевидных кристаллов — является неприменимость для них обычной технологии изготовления. Вискеризованные материалы требуют создания новой специализированной технологии в целях использования всех потенциальных возможностей вискеризации.
Таким образом, применяя различные способы расположения армирующих волокон, используя методы вискеризации, изменяя соотношения арматуры в разных направлениях, можно создавать материалы с задуманными свойствами.
Одним из наиболее серьезных недостатков современных КМ на основе высокомодульных волокон, обеспечивающих наибольшую удельную прочность и жесткость при статических нагрузках, является их относительная низкая трещиностойкость, определяющая усталостную прочность материала при нагрузках, действующих в режиме длительной эксплуатации, а также низкая стойкость при ударных и кратковременных динамических нагрузках. Однако в последнее время разрабатываются методики проектирования, основанные на изучении механики разрушения, и формирования на этой основе приемов, обеспечивающих необходимую трещиностойкость и стойкость к ударным нагрузкам конструкций из КМ.
Механизм разрушения материала представляет собой сложную совокупность явлений, возникающих при разрушении и рассматриваемых с точки зрения линейной механики. При этом механизм разрушения композитов отличается от разрушения металлов. В композитном материале, как правило, имеются внутренние дефекты, связанные с технологией их изготовления. Это прежде всего образование пустот (непроклей) внутри материала, различного рода инородные включения, нарушение непрерывности укладки волокон и степени равномерности их укладки в слое, остаточные напряжения, образующиеся при усадке матрицы и т. д. Эти дефекты материала могут служить источником концентрации напряжений, от которых возникают микротрещины. Наиболее общей закономерностью разрушения твердых тел является диффузионное или рассеянное накопление микротрещин в нагруженном материале, определяющее развитие разрушения. Это накопление и объединение микротрещин, которое происходит в результате длительного воздействия эксплуатационных нагрузок, обусловливает появление так называемых усталостных трещин. Возникновение и дальнейшее развитие усталостных трещин характеризует усталостную прочность материала.
При ударных нагрузках, вызванных попаданием в элементы конструкции посторонних предметов, происходит появление в материале дополнительных микротрещин, дробление и отслаивание волокон от связующего, которые, объединяясь в зависимости от силы удара, способствуют образованию обширной зоны нарушения сплошности материала в районе удара.
Появившиеся трещины можно разделить на две основные категории, а именно, трещины, распространяющиеся вдоль поверхности волокон и разделяющие волокна, остающиеся в композите, и трещины, распространяющиеся поперек волокон.
В первую категорию включаются трещины, которые распространяются вдоль волокон и разделяют композит по всей толщине, что вызывает немедленное разрушение. Повысить прочность материала в этом случае можно, только ужесточив требования к технологии изготовления материала и обеспечив необходимое «смачивание» армирующих волокон связующим, повысив адгезию на поверхности раздела.
Распространение трещин в поперечном направлении, а также стойкость КМ при ударных нагрузках могут быть рассмотрены в первом приближении, в рамках линейного механизма разрушения, обязанного возникновением работам Гриффитса, Ирвина и др. исследователей.
Согласно Гриффитсу развитие трещины происходит тогда, когда освободившаяся часть энергии деформации больше превращения поверхностной энергии, необходимой для образования новой поверхности трещины. При соблюдении этого условия в вершинах (на краях) образовавшейся трещины напряжение достигает такого уровня, при котором происходит дальнейший рост трещины без увеличения приложенной нагрузки.