На основании линейной теории упругости Ирвин оценил поле напряжений в окрестностях вершины трещины с помощью коэффициента интенсивности напряжений К, который характеризует интенсивность поля напряжений у вершины трещины. Разрушение материала наступает при условии, что коэффициент интенсивности напряжений достиг своего критического значения, равного Кс, являющегося постоянной характеристикой данного материала и определяющего условия его разрушения в результате образовавшейся трещины или пробоины без увеличения приложенной нагрузки. Величина коэффициента Кс, называемого еще характеристикой вязкости разрушения, связывает разрушающее напряжение в материале и предельно допустимые размеры его повреждения.
Повышение стойкости материала к разрушению достигается управлением его физико-механическими свойствами, такими, как пластичность, характеризуемая величиной относительной деформации при разрушении δ %, и ударная вязкость, характеризуемая коэффициентом ударной вязкости а [кг см/ см2]. Значения этих характеристик для ряда материалов приведены в табл. 1 и 4. Там же можно проследить влияние этих коэффициентов на величину коэффициента интенсивности напряжений Кс.
Наиболее эффективным путем повышения стойкости КМ к разрушению является создание гибридных композиционных материалов, состоящих из комбинации высокомодульных углеродных волокон и слоев или переплетений из органических или стеклянных волокон. Принципиально новый этап в создании композитов с повышенной усталостной и ударной прочностью связан с появлением, благодаря успехам химии волокнообразующих полимеров, высокопрочных, высокомодульных органических синтетических волокон с повышенными тепло- и термостойкостью. Отечественного волокна такого типа, как СВН, терлон, армос и др. имеют достаточно высокую жесткость, а по удельной прочности превосходят многие известные длинноволокнистые армирующие наполнители. Основные характеристики армирующих волокон приведены в табл. 3. Несомненным успехом в создании композитов повышенной прочности явилось появление органоволокна кевлар, разработанного фирмой Du Pont (США). Предел прочности при растяжении (σв) некрученого волокна, пропитанного связующим, составляет 367 кг/мм2, крученой пряжи — 281 кг/мм2 при плотности ρ = 1,44 г/см3. Относительное удлинение (δ) волокна кевлар составляет 2,5 %. Волокно обладает хорошей термостабильностью и сохраняет свойства в диапазоне температур от -70 °C до +180 °C с устойчивостью к усадке (0,2 % при температуре 60 °C). Оно стойко к химическим воздействиям, растворителю, жидкому топливу, морской воде. Обладает повышенными демпфирующими свойствами.
Гибридные полимерные композитные материалы на основе углеродных волокон с добавлением органических волокон представляют собой наиболее перспективные конструкционные композитные материалы, поскольку по своим прочностным характеристикам ни в чем не уступают традиционным конструкционным материалам-металлам, значительно превосходя их по весовой отдаче. Органические волокна, добавленные в углепластик, уменьшают плотность КМ и увеличивают его демпфирующие характеристики, сопротивление ударному, эрозионному и коррозионному воздействию. В результате гибридизации повышается ударная вязкость и трещиностойкость КМ по сравнению с углепластиками на углеродной основе.
Обычно для изготовления углеорганопластиков используется органическая ткань и углеродная лента; в качестве связующего используется эпоксидная смола. В настоящее время наиболее перспективными материалами являются композитные материалы марки УТ-900, изготовленной на основе высокопрочных углеродных волокон УКН и по переплетению волокон в материале напоминающий структуру сатиновой ткани (ткань сатинового плетения), и углеорганопластик УОЛ-300-К на основе комплексной ленты УОЛ, содержащей одну основную нить из органических волокон армос на четыре основных нити из углеродных волокон. В этих материалах применено особое связующее, обладающее достаточно высокой температурой отвердения, что позволяет повысить рабочую температуру изделия до 150 °C. Основные характеристики углеорганопластиков приведены в табл. 4. Там же для сравнения приведены характеристики стеклопластика, традиционного углепластика КМУ-3 и органопластика (органотекстолита).
Помимо управления структурным составом композиции КМ — использования гибридных волокон, повышение стойкости к разрушению может быть обеспечено особыми конструктивными мероприятиями внутри проектируемого материала. Эти конструктивные мероприятия основаны на наблюдениях особенностей разрушения в нагруженной конструкции, состоящей из нескольких составных элементов. Развитие усталостной трещины или сквозной пробоины, появившейся в одной из двух состыкованных пластин (например, в элементах обшивки крыла самолета или корпусе автомобиля), останавливается на поверхности раздела этих пластин и не переходит на соседнюю неповрежденную пластину. Это наблюдение послужило основой для создания т. н. стоперов трещин, которые представляют собой дополнительные включения в структуру материала, предотвращающие катастрофическое развитие усталостных трещин, пробоин или глобальных расслоений, вызванных ударными нагрузками.