Возникает интересный вопрос: почему языки, где приняты подобные системы счета, доходят именно до «четырех» и затем останавливаются (несмотря на то, что они уже выражают «три» и «четыре» через «один» и «два»)? Одно из объяснений состоит в том, что на руках у нас по четыре пальца, находящихся в похожем положении. Другое, более тонкое объяснение гласит, что ответ таится в физиологической ограниченности визуального восприятия человека. Согласно нескольким исследованиям, мы способны охватить одним взглядом – без подсчета – самое большее четыре-пять предметов. Может быть, вы помните, что в фильме «Человек дождя» Дастин Хоффман играет аутиста с необычайно развитой наблюдательностью и памятью на числа (на самом деле подобные способности в реальной жизни встречаются лишь в единичных случаях). В одном эпизоде по полу рассыпаются все зубочистки из коробочки, кроме четырех, и герой Хоффмана с первого взгляда подсчитывает, что на полу их 246. Конечно, рядовому человеку такой фокус не по силам. Это подтвердит всякий, кто когда-либо подсчитывал результаты голосования вручную. Обычный прием при этом – отмечать голоса пятерками, причем первые четыре обозначаются прямыми черточками, а пятый – черточкой поперек первых. Это придумали именно потому, что человеку трудно одним взглядом охватить больше четырех черточек. Подобную систему изобрели в английских пабах, где бармену приходилось подсчитывать количество кружек пива, и там она называется «ворота из пяти перекладин». Любопытно, что эксперимент, описанный историком математики Тобиасом Данцигом (1884–1956) в 1930 году в чудесной книге «Число, язык науки» (Tobias Dantzig, «Number, the Language of Science») показывает, что распознавать и различать до четырех предметов способны также некоторые птицы. Вот что рассказывает Данциг:
Один помещик решил пристрелить ворону, которая свила гнездо на смотровой башне его поместья. Он несколько раз пытался застать птицу врасплох, но безуспешно: при приближении человека ворона улетала из гнезда. А затем устраивалась на дереве вдали и выжидала, когда человек покинет башню, после чего возвращалась в гнездо. Однажды помещик придумал уловку: два человека вошли в башню, один остался внутри, а другой вышел наружу и удалился. Однако обмануть птицу не удалось: она держалась в отдалении, пока не вышел тот, кто оставался в башне. В последующие дни опыт повторили с участием двух, трех, а потом и четырех человек – но безуспешно. Наконец были отправлены пять человек; как и прежде, в башню вошли все, один остался внутри, а остальные вышли и удалились. Тут-то ворона и сбилась со счета. Она не смогла отличить пять от четырех и быстро вернулась в гнездо.
Есть много и других свидетельств в пользу гипотезы, что первоначальные системы счета создавались согласно концепции «один, два, много». Это следует из лингвистических различий в образовании множественного числа и дробей. Скажем, в иврите есть особая форма множественного числа для пар одинаковых предметов (например, рук и ног) и особые слова для предметов, у которых есть две одинаковые части (то есть для брюк, очков, ножниц), отличающиеся от обычного множественного числа. Обычно существительные во множественном числе оканчиваются на «им» в мужском роде и на «от» в женском, однако множественное число для глаз, грудей и т. п. и для предметов, у которых есть две одинаковые части, кончается на «аим». Подобные формы есть и в финском и когда-то, в Средние века, были в чешском. Но главное не это: переход к дробям, который, конечно, требует более основательного знакомства с числами, характеризуется явными лингвистическими отличиями в названиях всех дробей, кроме половины. В индоевропейских языках и даже в некоторых неиндоевропейских, например, в иврите и венгерском, названия трети, пятой части и т. д. в целом образуются от соответствующих числительных – три, пять и т. д. Например, «три» на иврите – «шалош», а «одна треть» – «шлиш». По-венгерски «три» – «харом», а «одна треть» – «хармад». А вот слово «половина» и в этих языках никак не связана с числительным «два». Скажем, по-румынски «два» – «дой», а «половина» – «юмате», на иврите «два» – «штаим», а «половина» – «хеци», по-венгерски «два» – «кеттё», а «половина» – «фел». Из этого можно сделать вывод, что хотя человечество довольно рано поняло, что такое 1/2 как число, однако представление о том, что другие дроби как-то связаны с целыми числами («одна какая-то»), вероятно, возникло лишь после того, как был перейден барьер «три – это уже много».