* "БдВ": — Если информация неизбежно зависит от наблюдателя и субъекта, то каким же образом физики приходят к объективным результатам? Ведь квантовая физика все же не образчик своеволия?
Цайлингер: — Информацию нельзя назвать чем-то исключительно субъективным. Конечно, информация — это то, чем кто-либо обладает, но в то же время это — информация о чем- то, то есть о самой действительности. * "БдВ": — Нильс Бор сказал однажды: кто не шокирован квантовой физикой, тот не понял ее. А Ричард Фейнман обмолвился даже, что квантовую физику не понимает никто. Проводя свои изощренные эксперименты, вы проникли в причудливый мир квантовой физики глубже, чем большинство других людей. Стала ли она для вас еще загадочнее? Цайлингер: — Проблема, о которой говорили Бор и Фейнман, заключается в следующем: с одной стороны, положения квантовой физики с невероятной точностью подтверждаются в экспериментах, вдобавок они очень красивы с математической точки зрения; с другой же стороны, этому разделу науки недостает какого-то понятного всем основополагающего принципа, из которого проистекала бы вся теория. Подобные принципы есть, например, в частной и общей теории относительности Эйнштейна.
Я думаю, что проблема тут в односторонне понятом реализме и надеюсь, что, прекратив разделять действительность и информацию, мы сделаем шаг в нужном направлении.
Итак, чем точнее измеряем координату, тем больше размазка скорости, и наоборот. Для макроскопических тел это остается фактически незаметным, а вот для молекул, атомов и других микрочастиц нельзя одновременно точно измерить скорость и координату. Поэтому описать предназначенное к транспортами тело можно лишь приближенно, какими бы изощренными не были способы измерений. Транспортированная реплика тела лишь похожа, но не идентична оригиналу.
Впрочем, практически это может быть вполне достаточным. Если передать внешние габариты куска железа и формулы, описывающие его атомы, это позволит изготовить приближенную копию, которую, опять-таки в силу гейзенберговского запрета на абсолютно точные измерения параметров, мы не отличим от исходного оригинала. Конечно, кусок железа — это предельно простой случай, но и в предельно сложном случае телепортации человека тоже возможен приближенный подход. Зачем передавать, например, точное расположение атомов его пищевода? Достаточно информировать адресата о структуре биологических тканей и их расположении в пищеводе. Мы знаем, что человек с протезом ног, почки, даже сердца не перестает быть самим собой. Насколько далеко можно пойти по этому пути?
На какой "красной черте" будут разрушены память и собственное "Я" оригинала? И вообще, что это будет — почти клон или всего лишь близнец? Сегодня эти вопросы из области фантастики. Тем не менее в отличие от чисто умозрительной "паранормальной транспортами" приближенная "винеровская телепортация" в принципе осуществима.
Наконец, есть еще квантовая телепортация, которая сегодня интенсивно обсуждается в самых серьезных физических журналах. Для того чтобы понять, в чем тут дело, нам придется еще раз поговорить о главной особенности квантовой физики.
Квантовая механика — очень трудная наука, выводы которой часто противоречат здравому смыслу и нашему повседневному опыту. Неискушенному человеку трудно поверить в "придуманные физиками" соотношения неопределенностей. Кому придет в голову сомневаться в том, что у катящейся по столу горошины есть одновременно координата и скорость? Казалось бы, то же должно быть и для любой микрочастицы. Что из того, что она маленькая? Нужно просто научиться точным измерениям.
А вот опыты с микрочастицами говорят, что это не так. Пытаясь при измерении координаты "приколоть" частицу к точке, мы всякий раз передаем ей импульс. На тяжелую горошину это почти не оказывает влияния, а, например, легкий электрон, как живчик, прыгает при этом от одной точки к другой. Получается, что говорить одновременно о координате и скорости просто бессмысленно. Это — несовместимые понятия. Если измерена координата, мы можем говорить о частице, если же точно известна скорость — мы имеем дело фактически с распределенной в пространстве волной, которую не опишешь одной- единственной координатой.
Этого нельзя понять, ведь "понять" означает уменье выразить нечто новое через более привычные понятия, а квантовые понятия нельзя выразить через понятия, известные нам из школы ньютоновской физики. Квантовые понятия надо просто принять — привыкнуть к ним.