Вопрос о том, как догадываться о распределениях, математически труден. Конечно, у природы есть время решать его; заряды притягиваются и отталкиваются до тех пор, пока не уравновесятся взаимно. А когда мы пробуем решить задачу, то каждая проба занимает так много времени, что этот метод оказывается очень громоздким. Когда имеется произвольный сложный набор проводников и зарядов, задача весьма усложняется, и в общем случае не может быть решена без специально разработанных численных методов. Такие численные расчеты в наши дни выполняются на счетных машинах, которые могут все посчитать за нас, если мы им объясним, как это сделать.
С другой стороны, имеется множество мелких практических случаев, в которых, к нашему удовольствию, удается добиться решения каким-то прямым методом, не составляя программы для машины. На наше счастье, во многих случаях с помощью того или иного фокуса можно выжать ответ из природы.
Первый такой фокус, который мы хотим вам показать, состоит в использовании уже известных решений задач с фиксированным расположением зарядов.
§ 7. Метод изображений
Мы определили поле двух точечных зарядов. На фиг. 6.8 показаны некоторые линии поля и эквипотенциальные поверхности, полученные из расчетов, приведенных в гл. 5. Рассмотрим теперь эквипотенциальную поверхность А. Предположим, что мы изогнули тонкий лист металла так, что он в точности
Фиг. 6.8. Линии поля и эквипотенциальные поверхности двух точечных зарядов.
накладывается на эту поверхность. Если его действительно наложить и установить на нем правильное значение потенциала, то никто не будет даже знать, что он там лежит, потому что ничего от его появления не изменилось.
А теперь взгляните внимательнее! На самом-то деле мы решили задачу уже с новым условием: поверхность изогнутого проводника с заданным потенциалом помещена близ точечного заряда. Если наш металлический лист, уложенный на эквипотенциальную поверхность, замыкается сам на себя (или тянется очень далеко), то получается картина, рассмотренная в Гл. 5, § 10, когда пространство делится на две области: одна внутри, другая снаружи замкнутой проводящей поверхности. Там мы пришли к выводу, что поля в этих двух областях совершенно не зависят друг от друга. Так что независимо от того, каково поле внутри замкнутого проводника, снаружи поле всегда одно и то же. Можно даже заполнить всю сердцевину проводника проводящим материалом. Выходит, нам удалось найти поле при конфигурации проводников и зарядов, изображенной на фиг. 6.9. В пространстве вне проводника поле как раз такое, как у двух точечных зарядов (см. фиг. 6.8). Внутри проводника оно нуль. И, кроме того, электрическое поле, как и следовало ожидать, у самой поверхности проводника нормально к ней.
Итак, мы можем рассчитать поля на фиг. 6.9, вычисляя поле, созданное зарядом q и воображаемым точечным зарядом —q, помещенным в подходящем месте. А точечный заряд, который мы представили себе существующим за проводящей поверхностью, так и называется зарядом-изображением.
В книгах можно найти длинные перечни решений задачи электростатики для гиперболических поверхностей и других сложных штук. Вас могло бы удивить, как это удалось рассчитать поля близ поверхностей столь ужасной формы. Но они были рассчитаны задом наперед! Кто-то решил простую задачу
Фиг. 6.9. Поле вне проводника, изогнутого вдоль эквипотенциальной поверхности А на предыдущем рисунке.
с фиксированными зарядами. А затем обнаружил, что появляются некоторые эквипотенциальные поверхности новой формы, ну и написал работу, в которой указал, что поля снаружи проводника такой формы могут быть изображены так-то и так-то.
§ 8. Точечный заряд у проводящей плоскости
В качестве простейшего применения этого метода используем плоскую эквипотенциальную поверхность В (см. фиг. 6.8). Она поможет нам решить задачу о заряде вблизи проводящей плоскости. Для этого зачеркнем просто левую часть фигуры. Линии поля нашего решения показаны на фиг. 6.10. Заметьте, что плоскость обладает нулевым потенциалом, потому что она находится как раз на полпути между зарядами. Мы решили задачу о положительном заряде вблизи заземленной проводящей плоскости.