Выбрать главу

Так мы узнали суммарное поле, но что можно сказать о том, каковы те реальные заряды, которые создали его? Кроме нашего положительного точечного заряда, ими являются какие-то отри­цательные заряды, наведенные на проводящей плоскости и при­тянутые положительным зарядом (с каких-то далеких расстоя­ний). Но теперь пусть вам захотелось узнать (то ли для техни­ческих целей, то ли просто из любопытства), как распределены эти отрицательные заряды по поверхности. Поверхностную плотность заряда вы сможете узнать, использовав результат, полученный в гл. 5, § 6 при помощи теоремы Гаусса. Нормаль­ная составляющая электрического поля возле самого провод­ника равна плотности поверхностного заряда а, деленной на e0. Мы можем узнать плотность заряда в каждой точке поверхности, отправляясь назад от нормальной составляющей электриче­ского поля на поверхности. А ее мы знаем, потому что вообще нам известно поле в любой точке.

Фиг. 6.10. Поле заряда, помещенного близ плоской проводящей поверхности, найденное методом изображений.

Рассмотрим точку поверхности на расстоянии r от той точки, которая расположена прямо против положительного заряда (см. фиг. 6.10). Электрическое поле в этой точке нор­мально к поверхности и направлено внутрь нее. Составляющая поля положительного точечного заряда, нормальная к поверх­ности, равна

(6.28)

К ней мы должны добавить электрическое поле, созданное отри­цательным зеркальным зарядом. Это удвоит нормальную со­ставляющую (и уничтожит все прочие), так что плотность за­ряда 0 в произвольной точке поверхности будет равна

(6.29)

Проинтегрировав а по всей поверхности, мы сможем прове­рить наши расчеты. Мы должны получить весь наведенный заряд, т. е. -q.

Еще один вопрос: действует ли на точечный заряд сила? Да, потому что наведенные на плоскости отрицательные заряды должны его притягивать. А раз мы знаем, каковы эти поверх­ностные заряды [по формуле (6.29)], то можем с помощью интег­рирования подсчитать силу, действующую на наш положитель­ный заряд. Но мы ведь знаем также, что сила, действующая на него, в точности такая, какой она была бы, если бы вместо плоскости был один только отрицательный зеркальный заряд, потому что поля поблизости от них в обоих случаях одинаковы. Точечный заряд тем самым испытывает силу притяжения к пло­скости, равную

(6.30)

Мы определили эту силу очень легко, без интегрирования по отрицательным зарядам.

§ 9. Точечный заряд у проводящей сферы

А какие еще поверхности, кроме плоскости, имеют простое решение? Самая простая из них — сфера. Попробуем определить поля вокруг металлической сферы с точечным зарядом q вблизи нее (фиг. 6.11). Придется поискать простую физическую задачу, для которой сфера есть эквипотенциальная поверхность. Если мы просмотрим те задачи, которые уже решены, то увидим, что у поля двух неравных точечных зарядов одна из эквипотен­циальных поверхностей как раз и есть сфера. Отметим себе это! Если мы как следует подберем положение заряда-изображения и нужную его величину, может быть, тогда мы и сможем подо­гнать эквипотенциальную поверхность к нашей сфере.

Фиг. 6.11. Точечный заряд q наводит на за­земленной проводящей сфере заряды, которые создают поле, такое же, как у заряда-изображе­ния, помещенного в ука­занной точке.

Это и впрямь может быть сделано, если действовать по следующему рецепту.

Положим, что вы хотите, чтобы эквипотенциальная поверх­ность была сферой радиуса а с центром, отстоящим от заряда q на расстояние b. Поместите изображение заряда величины q'=-q(a/b) на радиусе, проходящем через заряд на расстоянии a2/b от центра. Потенциал сферы пусть будет нуль.

Математически причина состоит в том, что сфера есть гео­метрическое место точек, отношение расстояний которых от двух данных точек постоянно. Как следует из фиг. 6.11, потен­циал в точке Р от зарядов q и q' пропорционален сумме

и будет равен нулю во всех точках, для которых