Выбрать главу

означает сильное поле близ проводника в этом месте.

Фиг. 6.14. Электрическое по­ле у острого края проводника очень велико.

Вообще в тех местах проводника, в которых радиус кривизны меньше, поле оказывается сильнее. Чтобы убедиться в этом, рас­смотрим комбинацию из большой и маленькой сфер, соединен­ных проводом, как показано на фиг. 6.15. Сам провод не будет сильно влиять на внешние поля; его дело — уравнять потен­циалы сфер. Возле какого шара поле окажется более напряжен­ным? Если радиус левого шара а, а заряд Q, то его потенциал примерно равен

(Конечно, наличие одного шара скажется на распределении за­рядов на другом, так что на самом деле ни на одном из них заря­ды не будут распределены симметрично. Но если нас интересует лишь примерная величина поля, то можно пользоваться форму­лой для потенциала сферического заряда.) Если меньший шар радиусом b обладает зарядом q, то его потенциал примерно ра­вен

Но j1=j2, так что

С другой стороны, поле у поверхности [см. уравнение (5.8)] пропорционально поверхностной плотности заряда, которая в свою очередь пропорциональна суммарному заряду, делен­ному на квадрат радиуса. Получается, что

(6.35)

Фиг. 6.15. Поле остроконеч­ного предмета можно прибли­женно считать полем двух сфер одинакового потенциала.

Значит, у поверхности меньшей сферы поле больше. Поля об­ратно пропорциональны радиусам.

Этот результат с технической точки зрения очень важен, потому что в воздухе возникает пробой, если поле чересчур велико. Какой-нибудь свободный заряд в воздухе (электрон или ион) ускоряется этим полем, и если оно очень сильное, то за­ряд может набрать до столкновения с атомом такую скорость, что вышибет из атома новый электрон. В итоге появляется все больше и больше ионов. Их движение и составляет искру, или разряд. Если вам требуется зарядить тело до высокого потен­циала так, чтобы оно не разрядилось в воздух, вы должны быть уверены, что поверхность тела гладкая, что на нем нет мест, где поле чересчур велико.

§ 12. Ионный микроскоп

Сверхвысокое электрическое поле, окружающее всякий острый выступ заряженного проводника, получило интересное применение в одном приборе. Работа ионного микроскопа обус­ловлена мощными полями, возникающими вокруг металличе­ского острия. Устроен этот прибор так. Очень тонкая игла, диаметр кончика которой не более 1000 Е, помещена в центре стеклянной сферы, из которой выкачан воздух (фиг. 6.16). Внутренняя поверхность сферы покрыта тонким проводящим слоем флуоресцирующего вещества, и между иглой и флуоре­сцирующим покрытием создана очень высокая разность потенциалов.

Посмотрим сперва, что будет, если игла по отношению к флу­оресцирующему экрану заряжена отрицательно. Линии поля у кончика иглы сконцентрированы очень сильно. Электрическое поле может достигать 40·106 в на 1 см. В таких сильных полях электроны отрываются от поверхности иглы и ускоряются на участке от иглы до экрана за счет разности потенциалов. Достигнув экрана, они вызывают в этом месте свечение (в точности, как на экране телевизионной трубки).

Фиг. 6.16. Ионный мик­роскоп.

Электроны, пришедшие в данную точку флуоресцирующей поверхности,— это, в очень хорошем приближении, те самые электроны, которые покинули другой конец радиальной линии поля, потому что электроны движутся вдоль линий поля, сое­диняющих кончик иглы с поверхностью сферы. Так что на поверхности мы видим своего рода изображение кончика иглы. А точнее, мы видим картину испускателъной способности по­верхности иглы, т. е. легкости, с которой электроны могут оставить поверхность металлического острия. Если сила разре­шения достаточно высока, то можно рассчитывать разрешить положения отдельных атомов на кончике иглы. Но с электро­нами такого разрешения достичь нельзя по следующим причи­нам. Во-первых, возникает квантовомеханическая дифракция электронных волн, и изображение затуманится. Во-вторых, в результате внутреннего движения в металле электроны имеют небольшую поперечную начальную скорость в момент вырывания из иглы и эта случайная поперечная составляющая ско­рости приведет к размазыванию изображения. В общей слож­ности эти эффекты ограничивают разрешимость деталей вели­чиной порядка 25А.