Выбрать главу

Если, однако, мы переменим знак напряжения и впустим в колбу немного гелия, то детали разрешены будут лучше. Когда атом гелия сталкивается с кончиком острия, мощное поле срывает с атома электрон, и атом заряжается положительно.

Фие. 6.17. Изображение, полученное ионным микро­скопом.

Затем ион гелия ускоряется вдоль силовой линии, пока не по­падет в экран. Поскольку ион гелия несравненно тяжелее элект­рона, то и квантовомеханические длины волн у него намного меньше. А если к тому же температура не очень высока, то и влияние тепловых скоростей также значительно слабее, чем у электрона. Изображение размазывается меньше и получается куда более резкое изображение кончика иглы. С микроскопом, работающим на принципе ионной эмиссии, удалось добиться увеличения вплоть до 2 000 000 раз, т. е. в десять раз лучше, чем на лучших электронных микроскопах.

На фиг. 6.17 показано, что удалось получить на таком мик­роскопе, применив вольфрамовую иглу. Центры атомов вольфра­ма ионизуют атомы гелия чуть иначе, чем промежутки между атомами вольфрама. Расположение пятен на флуоресцирующем экране демонстрирует расстановку отдельных атомов на воль­фрамовом острие. Почему пятна имеют вид колец, можно по­нять, если представить себе большой ящик, набитый шарами, уложенными в прямоугольную сетку и образующими таким обра­зом кубическую решетку. Эти шары — как бы атомы в металле. Если вы из этого ящика вырежете примерно сферическую часть, то увидите картину колец, характерную для атомной структуры. Ионный микроскоп впервые снабдил человечество средством видеть атомы. Замечательное достижение, да еще полученное с таким простым прибором.

*См. статью Мюллера [Е. W. Mueller, The field-ion microscope, Advances in Electronics and Electron Physics, 13, 83 (I960)].

Глава 7

ЭЛЕКТРИЧЕСКОЕ ПОЛЕ В РАЗНЫХ ФИЗИЧЕСКИХ УСЛОВИЯХ (продолжение)

§1.Методы определения электростати­ческого поля

§2.Двумерные поля; функции комплексного переменного

§З.Колебания плазмы

§4.Коллоидные частицы в электролите

§5.Электростати­ческое поле сетки

§ 1. Методы определения электростатического поля

В этой главе мы продолжим рассмотрение характеристик электрических полей в различ­ных условиях. Сперва мы опишем один из наи­более разработанных методов расчета полей в присутствии проводников. Мы не рассчиты­ваем, конечно, что эти усовершенствованные методы будут вами тотчас усвоены. Но вам дол­жно быть интересно получить какое-то пред­ставление о характере задач, которые удается решать при помощи техники, излагаемой в спе­циальных, более глубоких курсах. Затем мы приведем два примера, в которых нет ни за­ранее фиксированных распределений зарядов, ни растекания зарядов по проводнику, а вместо этого распределение определяют другие физи­ческие законы.

Как мы выяснили в гл. 6, задача об электро­статическом поле решается очень просто, когда распределение зарядов оговорено заранее; ос­тается только взять интеграл. Когда же име­ются проводники, то возникают усложнения, потому что распределение зарядов на провод­никах с самого начала неизвестно; заряды вынуждены сами распределять себя по поверх­ности проводника так, чтобы весь проводник приобрел одинаковый потенциал. Эти задачи так просто не решаются.

Мы рассмотрели обходный путь решения таких задач, при котором сначала отыскивают эквипотенциальные поверхности некоторого заданного распределения зарядов и потом одну из них заменяют проводящей поверх­ностью. Таким манером можно составить ката­лог частных решений для проводников любой формы, плоской, сферической и т. п. Использование изображений, описанное в гл. 6, является примером косвенного способа решения. Другой такой способ мы опишем в этой главе.

Если наша задача не относится к тем, для которых годен об­ходный путь, приходится решать ее в лоб. Математической ос­новой такого способа решения задач является решение урав­нения Лапласа

(7.1)

при условии, что потенциал j на некоторой границе (поверхно­стях проводников) равен условленной константе. Задачи, свя­занные с решением дифференциального уравнения поля, удовлетворяющего некоторым граничным условиям, называются задачами о граничных значениях. Они явились предметом интен­сивного математического изучения. Для сложных проводников общих аналитических методов решения нет. Даже такая про­стая задача, как поле заряженного металлического цилиндра с запаянными торцами — консервной банки, представляет огромные математические трудности. Ее можно решить лишь приближенно, численным методом. Единственный общий метод решения — численный.