(7.13)
дающая нам поле снаружи прямого угла, функция
(7.14)
дающая поле заряженной нити, и функция
(7.15)
изображающая поле двумерного аналога электрического диполя, т. е. двух параллельных прямых, заряженных противоположным знаком и помещенных вплотную друг к другу.
Больше этим вопросом в нашем курсе мы заниматься не будем; мы должны только подчеркнуть, что, хотя техника комплексных переменных часто оказывается очень мощной, она ограничена все же только двумерными задачами; к тому же это все-таки косвенный метод.
§ 3. Колебания плазмы
Займемся теперь такими физическими задачами, в которых поле создается не закрепленными зарядами и не зарядами на проводящих поверхностях, а сочетанием обоих факторов. Иными словами, полем управляют одновременно две системы уравнений: 1) уравнения электростатики, связывающие электрическое поле с распределением зарядов; 2) уравнения из другой области физики, определяющие положение или движения зарядов в поле.
Сперва мы разберем один динамический пример. В нем движение зарядов контролируется законами Ньютона. Простой пример такого положения вещей наблюдается в плазме, в ионизованном газе, состоящем из ионов и свободных электронов распределенных в какой-то области пространства. Ионосфера (верхний слой атмосферы) служит примером такой плазмы. Ультрафиолетовые лучи Солнца отрывают от молекул воздуха электроны и создают свободные электроны и ионы. В плазме положительные ионы намного тяжелее электронов, так что можно пренебречь движением в ней ионов но сравнению с движением электронов.
Пусть n0будет плотностью электронов в невозмущенном равновесном состоянии. Такой же должна быть и плотность положительных ионов, потому что в невозмущенном состоянии плазма нейтральна. Теперь допустим, что электроны каким-то образом выведены из равновесия. Что тогда получится? Если плотность электронов в какой-то области возросла, они начнут отталкиваться и стремиться вернуться в прежнее положение равновесия. Двигаясь к своим первоначальным положениям, они наберут кинетическую энергию и вместо того, чтобы замереть в равновесной конфигурации, проскочат мимо. Начнутся колебания. Нечто похожее наблюдается в звуковых волнах, но там возвращающей силой было давление газа. В плазме возвращающая сила — это действующее на электроны электрическое притяжение.
Чтобы упростить рассуждения, мы будем заниматься только одномерным движением электронов — скажем, в направлении x;. Предположим, что электроны, первоначально находившиеся в точке х, к моменту t сместились из положения равновесия на расстояние s (x, t). Раз они сместились, то плотность их, вообще говоря, изменилась. Это изменение подсчитать легко. Если посмотреть на фиг. 7.6, то видно, что электроны, вначале находившиеся между плоскостями а и b, сдвинулись и теперь находятся между плоскостями а' и b'. Количество электронов между а и b прежде было пропорционально n0Dх; теперь то же их количество находится в промежутке шириной Dx+Ds.
Фиг. 7.6. Движение волны в плазме.
Электроны от плоскости а сдвигаются к а', а от b —к b'.
Плотность
теперь стала
(7.16)
Если изменение плотности мало, то можно написать [заменяя с помощью биномиального разложения (1+e)-1 на (1-e)]
(7.17)
Что касается ионов, то предположим, что они не сдвинулись заметно с места (инерция-то у них куда больше), так что плотность их осталась прежней, n0.Заряд каждого электрона -qe, и средняя плотность заряда в любой точке равна
или
(7.18)
(здесь Ds/Dx записано через дифференциалы).
Далее, уравнения Максвелла связывают с плотностью зарядов электрическое поле. В частности,
(7.19)
Если задача действительно одномерна (и никаких полей, кроме вызываемых смещением электронов, нет), то у электрического поля Е есть одна-единственная составляющая Ех. Уравнение (7.19) вместе с (7.18) приведет к
(7.20)
Интегрируя (7.20), получаем
(7.21)
Постоянная интегрирования К равна нулю, потому что Ех=0 при s=0.