Выбрать главу

Вы должны обратить внимание на то, что, рассчитывая вир­туальную работу, мы предположили, что заряд конденсатора постоянен, что конденсатор не был электрически связан с дру­гими предметами и полный заряд не мог изменяться.

Фиг. 8.4. Поле у поверхности проводника меняется от нуля до E0=s/e0, когда пересечен слой по­верхностного заряда. 1 — проводящая пластина; 2 — слой поверхностного заряда.

А теперь пусть мы предположили, что при виртуальных пе­ремещениях конденсатор поддерживается при постоянной раз­ности потенциалов. Тогда мы должны были бы взять

и вместо (8.15) мы бы имели

что приводит к силе, равной по величине той, что была получена в уравнении (8.15) (так как V = Q/C), но с противоположным знаком!

Конечно, сила, действующая между пластинами конденса­тора, не меняет свой знак, когда мы отсоединяем конденсатор от источника электричества. Кроме того, мы знаем, что две плас­тины с разноименными электрическими зарядами должны при­тягиваться. Принцип виртуальной работы во втором случае был применен неправильно, мы не приняли во внимание виртуаль­ную работу, производимую источником, заряжающим конден­сатор. Это значит, что для того, чтобы удержать потенциал при постоянном значении V, когда меняется емкость, источник элект­ричества должен снабдить конденсатор зарядом VDC. Но этот заряд поступает при потенциале V, так что работа, выполняе­мая электрической системой, удерживающей заряд постоянным, равна V2DC. Механическая работа .FDz плюс эта электрическая работа V2DC вместе приводят к изменению полной энергии кон­денсатора на 1/2V2DC. Поэтому на механическую работу, как и прежде, приходится FDz=-1/2 V2DC.

§ 3. Электростатическая энергия ионного кристалла

Рассмотрим теперь применение понятия электростатической энергии в атомной физике. Мы не можем запросто измерять силы, действующие между атомами, но часто нас интересует разница в энергиях двух расстановок атомов (к примеру, энергия химических изменений). Так как атомные силы в основе своей — это силы электрические, то и химическая энергия в главной своей части — это просто электростатиче­ская энергия.

Рассмотрим, например, электростатическую энергию ионной решетки. Ионный кристалл, такой, как NaCl, состоит из поло­жительных и отрицательных ионов, которые можно считать жесткими сферами. Они электрически притягиваются, пока не соприкоснутся; затем вступает в дело сила отталкивания, кото­рая быстро возрастает, если мы попытаемся сблизить их теснее.

Для первоначального приближения вообразим себе совокуп­ность жестких сфер, представляющих атомы в кристалле соли. Строение такой решетки было определено с помощью дифрак­ции рентгеновских лучей. Эта решетка кубическая — что-то вроде трехмерной шахматной доски. Сечение ее изображено на фиг. 8.5. Промежуток между ионами 2,81 Е (или 2,81·10-8 см).

Если наше представление о системе правильно, мы должны уметь проверить его, задав следующий вопрос: сколько понадо­бится энергии, чтобы разбросать эти ионы, т. е. полностью раз­делить кристалл на ионы? Эта энергия должна быть равна теп­лоте испарения соли плюс энергия, требуемая для диссоциации молекул на ионы. Полная энергия разделения NaCl на ионы, как следует из опыта, равна 7,92 эв на молекулу.

Фиг. 8.5. Поперечный разрез кристалла соли в масштабе нескольких атомов.

В двух перпендикулярных к плоскости рисунка сечениях будет такое же шахматное расположение ионов Na и Сl (см. вып. 1, фиг. 1.7).

Пользуясь коэффициентом перевода

и числом Авогадро (количество молекул в грамм-молекуле)

можно представить энергию испарения в виде

Излюбленная единица энергии, которой пользуются физико-химики,— килокалория, равная 4190 дж; так что 1 эв на молеку­лу — это все равно что 23 ккал/моль. Химик сказал бы поэтому, что энергия диссоциации NaCl равна

Можем ли мы получить эту химическую энергию теоретиче­ски, подсчитывая, сколько работы понадобится для того, чтобы распотрошить кристалл? По нашей теории она равна сумме по­тенциальных энергий всех пар ионов. Проще всего составить себе представление об этой энергии, выбрав какой-то один ион и подсчитав его потенциальную энергию по отношению ко всем прочим ионам. Это даст удвоенную энергию на один ион, потому что энергия принадлежит парам зарядов. Если нам нужна энер­гия, связанная с одним каким-то ионом, то мы должны взять полусумму. Но на самом деле нам нужна энергия на молекулу, содержащую два иона, так что вычисляемая нами сумма прямо даст нам энергию на молекулу.