Энергия иона по отношению к его ближайшему соседу равна —e2/a, где e2=q2e/4pe0, а а — промежуток между центрами ионов. (Мы рассматриваем одновалентные ионы.) Эта энергия равна —5,12 эв; мы уже видим, что ответ получается правильного порядка величины. Но нам еще предстоит подсчитать бесконечный ряд членов.
Начнем со сложения энергий всех ионов, лежащих по прямой. Считая ион, отмеченный на фиг. 8.5 значком Na, нашим выделенным ионом, сперва рассмотрим те ионы, которые лежат на одной с ним горизонтали. Там есть два ближайших к нему иона хлора с отрицательными зарядами, на расстоянии я от Na каждый. Затем идут два положительных иона на расстояниях 2 а и т. д. Обозначая эту сумму энергий U1, напишем
(8.19)
Ряд сходится медленно, так что численно его оценить трудно,
но известно, что он равен ln2. Значит,
(8.20)
Теперь перейдем к ближайшей линии, примыкающей сверху. Ближайший ион отрицателен и находится на расстоянии а. Затем стоят два положительных на расстоянияхЦ2а. Следующая пара — на расстоянии Ц5а, следующая— наЦ10 а и т. д. Для всей линии получается ряд
(8.21)
Таких линий четыре: выше, ниже, спереди и сзади. Затем имеются четыре линии, которые являются ближайшими по диагонали, и т. д. и т. д.
Если вы терпеливо произведете подсчеты для всех линий и затем все сложите, то увидите, что итог таков:
Это число немного больше того, что было получено в (8.20) для первой линии. Учитывая, что е2/а=-5,12 эв, мы получим
Наш ответ приблизительно на 10% больше экспериментально наблюдаемой энергии. Он показывает, что наше представление о том, что вся решетка скрепляется электрическими кулоновскими силами, в основе своей правильно. Мы впервые получили специфическое свойство макроскопического вещества из наших познаний в атомной физике. Со временем мы добьемся гораздо большего. Область науки, пробующая понять поведение больших масс вещества на языке законов атомного поведения, называется физикой твердого тела.
А как же с ошибкой в наших расчетах? Почему они не до конца верны? Мы не учли отталкивание между ионами на близких расстояниях. Это ведь не совершенно жесткие сферы, так что, сблизясь, они немного сплющиваются. Но они не очень мягкие и сплющиваются самую чуточку. Все же какая-то энергия уходит на эту деформацию, и вот, когда ионы разлетаются, эта энергия высвобождается. Энергия, которая на самом деле нужна для того, чтобы развести все ионы врозь, чуть меньше той, которую мы вычислили; отталкивание помогает преодолеть электростатическое притяжение.
А есть ли возможность как-то прикинуть долю этого отталкивания? Да, если мы знаем закон силы отталкивания. Мы еще не умеем пока анализировать детали механизма отталкивания, но некоторое представление о его характеристиках мы можем получить из макроскопических измерений. Измеряя сжимаемость кристалла как целого, можно получить количественное представление о законе отталкивания между ионами, а отсюда — о его вкладе в энергию. Таким путем было обнаружено, что вклад этот должен составлять 1/9,4 часть вклада от электростатического притяжения и иметь, естественно, противоположный знак. Если этот вклад мы вычтем из чисто электростатической энергии, то получим для энергии диссоциации на молекулу число 7,99 эв. Это намного ближе к наблюдаемому результату 7,92 эв, но все еще не находится в совершенном согласии. Есть еще одна вещь, которую мы не учли: мы не сделали никаких допущений о кинетической энергии колебаний кристалла. Если сделать поправку на этот эффект, то сразу возникнет очень хорошее согласие с экспериментальной величиной. Значит, наши представления правильны: главный вклад в энергию кристалла, такого, как NaCl, является электростатическим.