Выбрать главу

§ 4. Электростатическая энергия ядра

Обратимся теперь к другому примеру электростатической энергии в атомной физике — к электростатической энергии атомного ядра. Прежде чем заняться этим вопросом, мы должны рассмотреть некоторые свойства тех основных сил (называемых ядерными силами), которые скрепляют между собой протоны и нейтроны в ядре. Первое время после открытия ядер — и про­тонов с нейтронами, которые их составляют,— надеялись, что закон сильной, неэлектрической части силы, действующей, на­пример, между одним протоном и другим, будет иметь какой-нибудь простой вид, подобный, скажем, закону обратных квад­ратов в электричестве. Если бы удалось определить этот закон сил и, кроме того, сил, действующих между протоном и нейт­роном и между нейтроном и нейтроном, то тогда можно было бы теоретически описать все поведение этих частиц в ядрах. Поэтому начала разворачиваться большая программа изучения рассеяния протонов в надежде отыскать закон сил, действую­щих между ними; но после тридцатилетних усилий ничего про­стого не возникло. Накопился заметный багаж знаний о силах, действующих между протоном и протоном, но при этом обнару­жилось, что эти силы сложны настолько, насколько возможно себе представить.

Под словами «сложны настолько, насколько возможно» мы понимаем, что силы зависят от всех величин, от каких они могли бы зависеть.

Во-первых, сила не простая функция расстояния между протонами. На больших расстояниях существует притяжение, на меньших — отталкива­ние.

Фиг. 8.6. Сила взаимодейст­вия двух протонов зависит от всех мыслимых параметров.

Зависимость от рас­стояния — это некоторая сложная функция, все еще не очень хорошо известная. Во-вторых, сила зави­сит от ориентации спина протонов. У протонов есть спин, а два взаимодействующих протона могут вращаться либо в одном и том же, либо в про­тивоположных направлениях. И сила, когда спины парал­лельны, отличается от того, что бывает, когда спины антипа­раллельны (фиг. 8.6, а и б). Разница велика; пренебречь ею нельзя.

В-третьих, сила заметно изменяется, смотря по тому, па­раллелен или нет промежуток между протонами их спинам (фиг. 8.6, в и г) или же он им перпендикулярен (фиг. 8.6, а и б).

В-четвертых, сила, как и в магнетизме, зависит (и даже зна­чительно сильнее) от скорости протонов. И эта скоростная зави­симость силы отнюдь не релятивистский эффект; она велика да­же тогда, когда скорости намного меньше скорости света. Бо­лее того, эта часть силы зависит, кроме величины скорости, и от других вещей. Скажем, когда протон движется невдалеке от другого протона, сила меняется от того, совпадает ли орби­тальное движение по направлению со спиновым вращением (фиг. 8.6, д), или эти два направления противоположны (фиг. 8.6, е). Это то, что называется «спин-орбитальной» частью силы.

Не в меньшей степени сложный характер имеют силы вза­имодействия протона с нейтроном и нейтрона с нейтроном. До сего дня мы не знаем механизма, определяющего эти силы, не знаем никакого простого способа их понять.

Впрочем, в одном важном отношении ядерные силы все же проще, чем могли бы быть. Ядерные силы, действующие между двумя нейтронами, совпадают с силами, действующими между протоном и нейтроном, и с силами, действующими между двумя протонами! Если в некоторой системе, в которой имеются ядра, мы заменим нейтрон протоном (и наоборот), то ядерные взаимодействия не изменятся! «Фундаментальная причина» этого равенства нам не известна, но это проявление важного принципа, который может быть расширен на законы взаимодействия других силь­но взаимодействующих ча­стиц, таких, как л-мезоны и «странные» частицы.

Этот факт прекрасно ил­люстрируется расположе­нием уровней энергии в похожих ядрах.

Фиг. 8.7. Энергетические уровни ядер В11 и С11 (энергии в Мэв). Основное состояние С11 на 1,982 Мэв выше, чем то же состояние В11.

Рассмотрим такое ядро, как В11 (бор-одиннадцать), состоящее из пяти протонов и шести нейтронов. В ядре эти одиннадцать частиц взаимодействуют друг с другом, совершая какой-то замысловатый танец. Но существу­ет такое сочетание всех возможных взаимодействий, кото­рое обладает энергией, наинизшей из возможных; это нормаль­ное состояние ядра, и его называют основным. Если ядро возму­тить (скажем, стукнув по нему высокоэнергичным протоном или еще какой-то частицей), то оно может перейти в любое число дру­гих конфигураций, называемых возбужденными состояниями, каждое из которых будет обладать своей характеристической энергией, которая выше энергии основного состояния. В иссле­дованиях по ядерной физике, скажем проводимых с генератором Ван-де-Граафа, энергии и другие свойства этих возбужденных состояний определяются экспериментально. Энергии пятнад­цати наинизших из известных возбужденных состояний В11 показаны на одномерной схеме в левой половине фиг. 8.7. Гори­зонталь внизу представляет основное состояние. Первое возбуж­денное состояние имеет энергию на 2,14 Мэв выше, чем основ­ное, следующее — на 4,46 Мэв выше, чем основное, и т. д. Иссле­дователи пытаются найти объяснение этой довольно запутанной картины уровней энергии; пока, однако, нет еще полной общей теории таких ядерных уровней энергии.