При таком сильном токе отрицательный заряд Земли должен был бы вскоре исчезнуть. Фактически понадобилось бы только около получаса, чтобы разрядить всю Землю. Но с момента открытия в атмосфере электрического поля прошло куда больше получаса. Как же оно держится? Чем поддерживается напряжение? И между чем и чем оно? На одном электроде Земля, а что на другом? Таких вопросов множество.
Земля заряжена отрицательно, а потенциал в воздухе положителен. На достаточно большой высоте проводимость так велика, что вероятность изменений напряжения по горизонтали становится равной нулю. Воздух при том масштабе времени, о котором сейчас идет речь, фактически превращается в проводник. Это происходит на высоте около 50 км. Это еще не так высоко, как то, что называют «ионосферой», где имеется очень большое количество ионов, образуемых за счет фотоэффекта от солнечных лучей. Для наших целей можно, обсуждая свойства атмосферного электричества, считать, что на высоте примерно 50 км воздух становится достаточно проводящим и там существует практически проводящая сфера, из которой вытекают вниз токи. Положение дел изображено на фиг. 9.4. Вопрос в том, как держится там положительный заряд. Как он накачивается обратно?
Фиг. 9.4. Типичные характеристики электрических свойств чистой атмосферы.
Раз он стекает на Землю, то должен же он как-то перекачиваться обратно? Долгое время это было одной из главных загадок атмосферного электричества.
Любая информация на этот счет может дать ключ к загадке или, по крайней мере, хоть что-то сообщить о ней. Вот одно интересное явление: если мы измеряем ток (а он, как мы знаем, устойчивее, чем градиент потенциала), скажем над морем, и при тщательном соблюдении предосторожностей, очень аккуратно все усредняем и избавляемся от всяких ошибок, то мы обнаруживаем, что остаются все же какие-то суточные вариации. Среднее по многим измерениям над океанами обладает временной вариацией примерно такой, какая показана на фиг. 9.5. Ток меняется приблизительно на ±15% и достигает наибольшего значения в 7 часов вечера по лондонскому времени. Самое странное здесь то, что, где бы вы ни измеряли ток — в Атлантическом ли океане, в Тихом ли или в Ледовитом, — его часы пик бывают тогда, когда часы в Лондоне показывают 7 вечера! Повсюду во всем мире ток достигает максимума в 19.00 по лондонскому времени, а минимума — в 4.00 по тому же времени. Иными словами, ток зависит от абсолютного земного времени, а не от местного времени в точке наблюдения.
Фиг. 9.5. Средняя суточная вариация градиента потенциала атмосферы в ясную погоду над океанами.
В одном отношении это все же не так уж странно; это вполне сходится с нашим представлением о том, что на самом верху имеется очень большая горизонтальная проводимость, которая и исключает местные изменения разности потенциалов между Землей и верхом. Любые изменения потенциала должны быть всемирными, и так оно и есть. Итак, теперь мы знаем, что напряжение «вверху» с изменением абсолютного земного времени то подымается, то падает на 15%.
§ 3. Происхождение токов в атмосфере
Теперь нужно ответить на вопрос об источнике больших отрицательных токов, которые должны течь от «верха» к земной поверхности, чтобы поддержать ее отрицательный заряд. Где же те батареи, которые это делают? «Батарея» показана на фиг. 9.6. Это гроза или вернее молнии. Оказывается, вспышки молний не «разряжают» той разности потенциалов, о которой мы говорили (и как могло бы на первый взгляд показаться). Молнии снабжают Землю отрицательным зарядом. Если мы увидали молнию, то можно поспорить на десять против одного, что она привела на Землю большое количество отрицательных зарядов. Именно грозы заряжают Землю в среднем током в 1800 а электричества, которое затем разряжается в районах с хорошей погодой.
На Земле каждые сутки гремит около 300 гроз. Их-то и можно считать теми батареями, которые накачивают электричество в верхние слои атмосферы и сохраняют разность потенциалов. А теперь учтите географию — полуденные грозы в Бразилии, тропические — в Африке и т. д. Ученые сделали оценки того, сколько молний ежесекундно бьет в Землю; нужно ли говорить, что их оценки более или менее согласуются с измерениями разности потенциалов: общая степень грозовой деятельности достигает на всей Земле максимума в 19.00 по лондонскому времени. Однако оценки грозовой деятельности делать очень трудно; сделаны они были только после того, как стало известно, что такие вариации должны существовать. Трудность заключается в том, что в океанах, да и повсюду в мире не хватает наблюдений, их мало, чтобы точно установить число гроз. Но те ученые, которые думают, что они «все учли правильно», уверяют, что максимум деятельности приходится на 19.00 по гринвичскому среднему времени.