Выбрать главу

Заряд внутри нее равен внутреннему объему, умноженному на r, т. е.

Применяя закон Гаусса, получаем величину поля

(5.7)

Вы видите, что при r=R эта формула дает правильный резуль­тат. Электрическое поле пропорционально расстоянию от центра и направлено по радиусу наружу.

Аргументы, которые мы только что приводили для однород­но заряженного шара, можно применить и к заряженной сфере. Опять предполагая радиальность и сферическую симметрию поля, из закона Гаусса немедленно получаем, что поле вне сфе­ры во всем подобно полю точечного заряда, поле же внутри сфе­ры — нуль (если мы проведем гауссову поверхность внутри сфе­ры, то внутри нее зарядов не окажется).

§ 8. Точен ли закон Кулона?

Если мы вглядимся чуть пристальнее в то, как поле внутри сферы оказывается нулевым, то лучше поймем, почему закон Гаусса обязан своим происхождением закону Кулона, т. е. точ­ной зависимости силы от второй степени расстояния. Возьмем произвольную точку Р внутри однородно заряженной сфери­ческой поверхности.

Фиг. 5.9. Во всякой точке Р внутри заряженной сфериче­ской оболочки поле равно нулю.

Представим узкий конус, который начи­нается в точке Р и тянется до поверхности сферы, вырезая там небольшой сферический участок Dat (фиг. 5.9). В точности сим­метричный конус по другую сторону вершины вырежет на по­верхности площадь Dа2. Если расстояния от Р до этих двух элементов площади равны r1 и r2, то площади находятся в от­ношении

(Вы можете доказать это для любой точки шара с помощью гео­метрии.)

Если поверхность сферы заряжена равномерно, то заряд Dq на каждом элементе поверхности пропорционален его пло­щади

Тогда закон Кулона утверждает, что величины полей, созда­ваемых в Р этими двумя элементами поверхности, находятся в отношении

Поля в точности взаимно уничтожаются. Таким способом можно разбить на пары всю сферу. Значит, все поле в точке Р равно нулю. Но вы видите, что этого не было бы, окажись показатель степени r в законе Кулона не равным в точности двойке.

Справедливость закона Гаусса зависит от закона обратных квадратов Кулона. Если бы закон силы не подчинялся в точности зависимости 1/r2, то поле внутри однородно заряженной сфе­ры не было бы в точности равно нулю. Например, если бы поле менялось быстрее (скажем, как 1/r3), то часть сферы, которая ближе к точке Р, создала бы в точке Р более сильное поле, чем дальняя часть. Получилось бы (для положительного поверх­ностного заряда) радиальное поле, направленное к центру. Эти заключения подсказывают нам элегантный путь проверки точности выполнения закона обратных квадратов. Для этого нужно только узнать, в точности ли поле внутри однородно за­ряженной сферы равно нулю.

Наше счастье, что такой способ существует. Ведь обычно трудно измерить физическую величину с высокой точностью. Добиться однопроцентной точности было бы нетрудно, но как быть, если нам понадобится измерить закон Кулона с точностью, скажем, до одной миллиардной? Можно почти ручаться, что из­мерить с такой точностью силу, действующую между двумя за­ряженными телами, не способны даже лучшие приборы. Но если только нужно убедиться в том, что поле внутри сферы меньше некоторого значения, то можно провести довольно точное из­мерение справедливости закона Гаусса и тем самым проверить обратную квадратичную зависимость в законе Кулона. В сущ­ности происходит сравнение закона силы с идеальным законом обратных квадратов. Именно такие сравнения одинаковых, или почти одинаковых, вещей обычно становятся основой самых точ­ных физических измерений.

Как же наблюдать поле внутри заряженной сферы? Один из способов,— это попытаться зарядить тело, дотронувшись им до внутренней части сферического проводника. Вы знаете, что если коснуться металлическим шариком заряженного тела, затем электрометра, то прибор зарядится и стрелка отклонится от нуля (фиг. 5.10, а). Шар собирает на себя заряды, потому что снаружи заряженной сферы имеются электрические поля, за­ставляющие заряды переходить на шарик (или с него). А если вы проделаете тот же опыт, коснувшись шариком внутренности заряженной сферы, то увидите, что к электрометру заряд не подводится. Из такого опыта сразу видно, что внутреннее поле составляет в лучшем случае несколько процентов от внешнего и что закон Гаусса верен, по крайней мере, приближенно.