Еще один каверзный вопрос: если закон обратных квадратов верен и на расстояниях порядка 1 м и на расстояниях порядка 10-10 м, то остается ли тем же коэффициент 1/4pe0? Да,— гласит ответ,— по крайней мере, с точностью до 15 миллионных.
Вернемся теперь к важному вопросу, от которого мы отмахнулись, когда говорили об опытном подтверждении закона Гаусса.
Вас могло удивить, как в опыте Максвелла и Плимптона— Лафтона удалось достичь такой точности. Ведь вряд ли сферический проводник мог быть идеальной сферой. Достичь точности в одну миллиардную — это прекрасно; но резонно спросить: как могли они столь точно изготовить сферу? Наверняка на сфере были небольшие неправильности, как на всякой реальной сфере, и не могли ли эти нерегулярности создать какое-то поле внутри? Мы хотим показать теперь, что в идеальной сфере вовсе нет необходимости. Оказывается можно доказать, что внутри замкнутой проводящей оболочки любой формы поля не бывает. Иными словами, опыты зависели от 1/r2, но никак не были связаны со сферической формой поверхности (разве что со сферой легче было бы рассчитать поле, если бы закон Кулона оказался ошибочным). Итак, мы снова возвращаемся к этому вопросу. Для решения его нам нужно знать кое-какие свойства проводников электричества.
§ 9. Поля проводника
Проводник электричества — это твердое тело, в котором есть много «свободных» электронов. Электроны могут двигаться в веществе свободно, но не могут покидать поверхности. В металле бывает так много свободных электронов, что всякое электрическое поле приводит многие из них в движение. И либо возникший таким образом ток электронов должен непрерывно поддерживать свое существование за счет внешних источников энергии, либо движение электронов прекращается, как только они разрядят источники, вызвавшие ноле вначале. В условиях «электростатики» мы не рассматриваем непрерывных источников тока (о них мы будем говорить в магнитостатике), так что электроны движутся только до тех пор, пока не расположатся так, что повсюду внутри проводника создастся нулевое электрическое поле. (Как правило, это происходит в малые доли секунды.) Если бы осталось внутри хоть какое-нибудь поле, оно бы вынудило двигаться еще какие-то электроны; возможно только такое электростатическое решение, когда поле всюду внутри равно нулю.
Теперь рассмотрим внутренность заряженного проводящего тела. (Мы имеем в виду внутреннюю часть самого металла.) Так как металл — проводник, то внутреннее поле должно быть нулем, а значит, и градиент потенциала j равен нулю. Это значит, что j от точки к точке не меняется. Любой проводник — это эквипотенциальная область, и его поверхность — эквипотенциальна. Раз в проводящем материале электрическое поле повсюду равно нулю, то и дивергенция Е тоже равна нулю, и по закону Гаусса плотность заряда во внутренней части проводника обращается в нуль.
Но если внутри проводника не может быть зарядов, как же он вообще может быть заряжен? Что мы имеем в виду, когда говорим, что проводник «заряжен»? Где эти заряды? Они находятся на поверхности проводника, где существуют большие силы, не дающие им покинуть ее, так что они не вполне «свободны». Когда мы будем изучать физику твердого тела, мы увидим, что избыточный заряд в любом проводнике находится только в узком слое у поверхности, толщиной в среднем в один-два атома. Для наших нынешних целей достаточно правильно будет говорить, что любой заряд, попавший на (или в) проводник, собирается на его поверхности; внутри проводника никаких зарядов нет.
Мы замечаем также, что электрическое поле возле самой поверхности проводника должно быть нормально к поверхности. Касательной составляющей у него быть не может. Если бы она появилась, электроны двигались бы вдоль поверхности; нет сил, которые способны помешать этому. Это можно выразить и иначе: мы знаем, что линии электрического поля должны всегда быть направлены поперек эквипотенциальной поверхности.
Применяя закон Гаусса, мы можем связать напряженность поля у самой поверхности проводника с локальной плотностью заряда на поверхности. За гауссову поверхность мы примем небольшой цилиндрический стакан, наполовину погруженный в проводник, а наполовину выдвинутый из него (фиг. 5.11). Вклад в общий поток Е дает только та часть стакана, которая находится вне проводника. Тогда поле у наружной поверхности проводника равно