Выбрать главу

Еще один каверзный вопрос: если закон обратных квадратов верен и на расстояниях порядка 1 м и на расстояниях порядка 10-10 м, то остается ли тем же коэффициент 1/4pe0? Да,— гласит ответ,— по крайней мере, с точностью до 15 миллионных.

Вернемся теперь к важному вопросу, от которого мы отмах­нулись, когда говорили об опытном подтверждении закона Гаусса.

Вас могло удивить, как в опыте Максвелла и Плимптона— Лафтона удалось достичь такой точности. Ведь вряд ли сфери­ческий проводник мог быть идеальной сферой. Достичь точно­сти в одну миллиардную — это прекрасно; но резонно спро­сить: как могли они столь точно изготовить сферу? Наверняка на сфере были небольшие неправильности, как на всякой реаль­ной сфере, и не могли ли эти нерегулярности создать какое-то поле внутри? Мы хотим показать теперь, что в идеальной сфере вовсе нет необходимости. Оказывается можно доказать, что внут­ри замкнутой проводящей оболочки любой формы поля не бы­вает. Иными словами, опыты зависели от 1/r2, но никак не были связаны со сферической формой поверхности (разве что со сфе­рой легче было бы рассчитать поле, если бы закон Кулона ока­зался ошибочным). Итак, мы снова возвращаемся к этому воп­росу. Для решения его нам нужно знать кое-какие свойства проводников электричества.

§ 9. Поля проводника

Проводник электричества — это твердое тело, в котором есть много «свободных» электронов. Электроны могут двигаться в веществе свободно, но не могут покидать поверхности. В ме­талле бывает так много свободных электронов, что всякое элект­рическое поле приводит многие из них в движение. И либо воз­никший таким образом ток электронов должен непрерывно поддерживать свое существование за счет внешних источников энергии, либо движение электронов прекращается, как только они разрядят источники, вызвавшие ноле вначале. В условиях «электростатики» мы не рассматриваем непрерывных источни­ков тока (о них мы будем говорить в магнитостатике), так что электроны движутся только до тех пор, пока не расположатся так, что повсюду внутри проводника создастся нулевое элект­рическое поле. (Как правило, это происходит в малые доли се­кунды.) Если бы осталось внутри хоть какое-нибудь поле, оно бы вынудило двигаться еще какие-то электроны; возможно только такое электростатическое решение, когда поле всюду внутри равно нулю.

Теперь рассмотрим внутренность заряженного проводящего тела. (Мы имеем в виду внутреннюю часть самого металла.) Так как металл — проводник, то внутреннее поле должно быть ну­лем, а значит, и градиент потенциала j равен нулю. Это значит, что j от точки к точке не меняется. Любой проводник — это эквипотенциальная область, и его поверхность — эквипотен­циальна. Раз в проводящем материале электрическое поле пов­сюду равно нулю, то и дивергенция Е тоже равна нулю, и по закону Гаусса плотность заряда во внутренней части провод­ника обращается в нуль.

Но если внутри проводника не может быть зарядов, как же он вообще может быть заряжен? Что мы имеем в виду, когда говорим, что проводник «заряжен»? Где эти заряды? Они нахо­дятся на поверхности проводника, где существуют большие силы, не дающие им покинуть ее, так что они не вполне «сво­бодны». Когда мы будем изучать физику твердого тела, мы уви­дим, что избыточный заряд в любом проводнике находится толь­ко в узком слое у поверхности, толщиной в среднем в один-два атома. Для наших нынешних целей достаточно правильно будет говорить, что любой заряд, попавший на (или в) проводник, собирается на его поверхности; внутри проводника никаких зарядов нет.

Мы замечаем также, что электрическое поле возле самой поверхности проводника должно быть нормально к поверхности. Касательной составляющей у него быть не может. Если бы она появилась, электроны двигались бы вдоль поверхности; нет сил, которые способны помешать этому. Это можно выразить и иначе: мы знаем, что линии электрического поля должны всег­да быть направлены поперек эквипотенциальной поверхности.

Применяя закон Гаусса, мы можем связать напряженность поля у самой поверхности проводника с локальной плотностью заряда на поверхности. За гауссову поверхность мы примем не­большой цилиндрический стакан, наполовину погруженный в проводник, а наполовину выдвинутый из него (фиг. 5.11). Вклад в общий поток Е дает только та часть стакана, которая находится вне проводника. Тогда поле у наружной поверх­ности проводника равно