Полагая число молекул на единичный телесный угол, направленных под углом q, равным n(q), имеем
(11.16)
Для обычных температур и полей показатель экспоненты мал, и, разлагая экспоненту, можно воспользоваться приближенным выражением
(11.17)
Найдем n , проинтегрировав (11.17) по всем углам; результат должен быть равен N, т.е. числу молекул в единице объема. Среднее значение cos q при интегрировании по всем углам есть нуль, так что интеграл равен просто n0 , умноженному на полный телесный угол 4p. Получаем
(11.18)
Из (11.17) видно, что вдоль поля (cosq=1) будет ориентировано больше молекул, чем против поля (cosq = -1). Поэтому в любом малом объеме, содержащем много молекул, возникнет суммарный дипольный момент на единицу объема, т.е. поляризация Р. Чтобы вычислить Р, нужно знать векторную сумму всех молекулярных моментов в единице объема. Мы знаем, что результат будет направлен вдоль Е, поэтому нужно только просуммировать компоненты в этом направлении (компоненты, перпендикулярные Е, при суммировании дадут нуль):
Мы можем оценить сумму, проинтегрировав по угловому распределению. Телесный угол, отвечающий q, есть 2psin qdq; отсюда
(11.19)
Подставляя вместо n(q) его выражение из (11.17), имеем
что легко интегрируется и приводит к следующему результату:
(11.20)
Поляризация пропорциональна полю Е, поэтому диэлектрические свойства будут обычные. Кроме того, как мы и ожидаем, поляризация обратно пропорциональна температуре, потому что при более высоких температурах столкновения больше разрушают выстроенность. Эта зависимость вида 1/T называется законом Кюри. Квадрат постоянного момента р0появляется по следующей причине: в данном электрическом поле выстраивающая сила зависит от р0, а средний момент, возникающий при выстраивании, снова пропорционален р0. Средний индуцируемый момент пропорционален р02
Теперь посмотрим, насколько хорошо уравнение (11.20) согласуется с экспериментом. Возьмем водяной пар. Поскольку мы не знаем, чему равно р0, то не можем прямо вычислить и Р, но уравнение (11.20) предсказывает, что x-1 должна меняться обратно пропорционально температуре, и это нам следует проверить.
Из (11.20) получаем
(11.21)
так что x-1 должна меняться прямо пропорционально плотности N и обратно пропорционально абсолютной температуре. Диэлектрическая проницаемость была измерена при нескольких значениях давления и температуры, выбранных таким образом, чтобы число молекул в единице объема оставалось постоянным. (Заметим, что, если бы все измерения выполнялись при постоянном давлении, число молекул в единице объема уменьшалось бы линейно с повышением температуры, а х-1 изменялась бы как T-2, а не как T-1.)
Фиг. 11.4. Измеренные значения диэлектрической проницаемости водяного пара при нескольких температурах.
На фиг. 11.4 мы отложили измеренные значения к — 1 как функцию 1/T. Зависимость, предсказываемая формулой (11.21), выполняется хорошо.
Есть еще одна особенность диэлектрической проницаемости полярных молекул — ее изменение в зависимости от частоты внешнего поля. Благодаря тому что молекулы имеют момент инерции, тяжелым молекулам требуется определенное время, чтобы повернуться в направлении поля. Поэтому, если использовать частоты из верхней микроволновой зоны или из еще более высокой, полярный вклад в диэлектрическую проницаемость начинает спадать, так как молекулы не успевают следовать за полем. В противоположность этому электронная поляризуемость все еще остается неизменной вплоть до оптических частот, поскольку инерция
электронов меньше.
§ 4. Электрические поля в пустотах диэлектрика
Теперь мы переходим к интересному, но сложному вопросу о диэлектрической проницаемости плотных веществ. Возьмем, например, жидкий гелий, или жидкий аргон, или еще какое-нибудь неполярное вещество. Мы по-прежнему ожидаем, что у них есть электронная поляризуемость. Но в плотных средах значение Р может быть велико, поэтому в поле, действующее на отдельный атом, вклад будет давать поляризация атомов, находящихся по соседству. Возникает вопрос, чему равно электрическое поле, действующее на отдельный атом?