Прежде чем определить плотности зарядов в системе S', нужно знать, что происходит с электрическим зарядом группы электронов, когда заряды движутся. Мы знаем, что кажущаяся масса частицы приобретает множитель 1/Ц(1-v2/c2). Происходит ли что-нибудь подобное с ее зарядом? Нет! Заряды никогда не меняются независимо от того, движутся ли они или нет. Иначе мы не могли бы наблюдать на опыте сохранение полного заряда.
Возьмем кусок вещества, например проводника, и пусть он вначале незаряжен. Теперь нагреем его. Поскольку масса электронов иная, чем у протонов, скорости электронов и протонов изменятся по-разному. Если бы заряд частицы зависел от скорости частицы, которая его переносит, то в нагретом куске заряды электронов и протонов не были бы скомпенсированы. Кусок материала при нагревании становился бы заряженным.
Фиг. 13.11. Если распределение заряженных частиц имеет плотность зарядов р0, то с точки зрения системы, движущейся с относительной скоростью v, плотность зарядов будет равна r=r0/Ц (1 - v2/с2).
Мы видели раньше, что очень малое изменение заряда у каждого из электронов в куске привело бы к огромным электрическим полям. Ничего подобного никогда не наблюдалось.
Кроме того, можно заметить, что средняя скорость электронов в веществе зависит от его химического состава. Если бы заряд электрона менялся со скоростью, суммарный заряд в куске вещества изменялся бы в ходе химической реакции. Как и раньше, прямое вычисление показывает, что даже совсем малая зависимость заряда от скорости привела бы в простейших химических реакциях к огромным полям. Ничего похожего не наблюдалось, и мы приходим к выводу, что электрический заряд отдельной частицы не зависит от состояния движения или покоя.
Итак, заряд частицы q есть инвариантная скалярная величина, не зависящая от системы отсчета. Это означает, что в любой системе плотность зарядов у некоторого распределения электронов просто пропорциональна числу электронов в единице объема. Нам нужно только учесть тот факт, что объем может меняться из-за релятивистского сокращения расстояний.
Применим теперь эти идеи к нашей движущейся проволоке. Если взять проволоку длиной L0, в которой плотность неподвижных зарядов есть r0, то в ней будет содержаться полный заряд Q-r0L0A0. Если те же заряды движутся в другой системе со скоростью v, то они все будут находиться в куске материала
меньшей длины
(13.22)
но того же сечения A0, поскольку размеры в направлении, перпендикулярном движению, не меняются (фиг. 13.11).
Если через r обозначить плотность зарядов в системе, где они движутся, то полный заряд Q будет rLA0. Но это должно быть также равно r0L0А, потому что заряд в любой системе одинаков, следовательно, rL=r0L0, или с помощью (13.22)
(13.23)
Плотность зарядов движущейся совокупности зарядов меняется таким же образом, как и релятивистская масса частицы. Применим теперь этот результат к плотности положительных зарядов r+ в нашей проволоке. Эти заряды покоятся в системе S. Однако в системе S", где проволока движется со скоростью v, плотность положительных зарядов становится равной
(13.24)
Отрицательные заряды в системе S' покоятся, поэтому их плотность в этой системе есть «плотность покоя» r0. В уравнении (13.23) r0=r-, потому что их плотность зарядов равна r- , если проволока покоится, т. е. в системе S, где скорость отрицательных зарядов равна v. Тогда для электронов проводимости мы получаем
(13;25)
или
(13.26)
Теперь мы можем понять, почему в системе S' возникают электрические поля: потому что в этой системе в проволоке имеется результирующая плотность зарядов r', даваемая формулой
С помощью (13.24) и (13.26) имеем
Поскольку покоящаяся проволока нейтральна, r- = -r+, получаем