Поля суть способ описания того, что происходит в некоторой точке пространства. В частности, Е и В говорят нам о силах, которые будут действовать на движущуюся частицу. Вопрос «чему равна сила, действующая на заряд со стороны движущегося магнитного поля?» не имеет сколько-нибудь точного содержания. Сила дается величинами Е и В в точке заряда, и формула (13.1) не изменится, если источник полей Е или В движется (изменятся в результате движения как раз значения Е и В). Наше математическое описание относится только к полям как функциям х, у, z и t, взятым в некоторой инерциалъной системе отсчета.
Позднее мы будем говорить о «волне электрического и магнитного полей, распространяющейся в пространстве», например о световой волне. Но это все равно, что говорить о волне, бегущей по веревке. Мы при этом не имеем в виду, что какая-нибудь часть веревки движется в направлении волны, а подразумеваем, что смещение веревки появляется сначала в одном месте, а затем в другом. Аналогично для электромагнитной волны — сама волна распространяется, а величина полей изменяется.
Так что в будущем, когда мы — или кто-нибудь еще — будем говорить о «движущемся» поле, вы должны понимать, что речь идет просто о коротком и удобном способе описания изменяющегося ноля в определенных условиях.
§ 7. Преобразование токов и зарядов
Вы, вероятно, были обеспокоены сделанным нами упрощением, когда мы взяли одну и ту же скорость v для частицы и электронов проводимости в проволоке. Можно было бы вернуться назад и снова проделать анализ с двумя разными скоростями, но легче просто заметить, что плотность заряда и тока являются компонентами четырехвектора (см. вып. 2, гл. 17).
Мы видели уже, что если r0 есть плотность зарядов в их системе покоя, то в системе, где они имеют скорость v, плотность равна
В этой системе их плотность тока есть
(13.34)
Далее, мы знаем, что энергия U и импульс частицы р, движущейся со скоростью v, даются выражениями
где m0 — ее масса покоя. Мы знаем также, что U и р образуют релятивистский четырехвектор. Поскольку r и j зависят от скорости v в точности, как U и р, то можно заключить, что r и j также компоненты релятивистского четырехвектора. Это свойство есть ключ к общему анализу поля проволоки, движущейся с любой скоростью, и мы могли бы его использовать, если бы захотели решить снова задачу со скоростью частицы v0, не равной скорости электронов проводимости.
Если нам нужно перевести r и j в систему координат, движущуюся со скоростью и в направлении х, то мы знаем, что они преобразуются в точности как t и (х, у, z); поэтому мы имеем (см. вып. 2, гл. 15)
(13.35)
С помощью этих уравнений можно связать заряды и токи в одной системе с зарядами и токами в другой. Взяв заряды и токи в какой-то системе, можно решить электромагнитную задачу в этой системе, пользуясь уравнениями Максвелла. Результат, который мы получим для движения частиц, будет одним и тем же, независимо от выбранной системы отсчета. Позже мы вернемся к релятивистским преобразованиям электромагнитных полей.
§ 8. Суперпозиция; правило правой руки
Мы закончим эту главу еще двумя замечаниями по вопросам магнитостатики. Первое: наши основные уравнения для магнитного поля
линейны до В и j. Это означает, что принцип суперпозиции (наложения) приложим и к магнитному полю. Поле, создаваемое двумя разными постоянными токами, есть сумма собственных полей от каждого тока, действующего по отдельности. Наше второе замечание относится к правилам правой руки, с которыми мы уже сталкивались (правило правой руки для магнитного поля, создаваемого током). Мы указывали также, что намагничивание железного магнита объясняется вращением электронов в материале. Направление магнитного поля вращающегося электрона связано с осью его вращения тем же самым правилом правой руки. Поскольку В определяется правилом определенной руки (с помощью либо векторного произведения, либо ротора), он называется аксиальным вектором. (Векторы, направление которых в пространстве не зависит от ссылок на левую или правую руку, называются полярными векторами. Например, смещение, скорость, сила и Е — полярные векторы.)