Выбрать главу

Физически наблюдаемые величины в электромагнетизме, однако, не связаны с правой или левой рукой. Из гл. 52 (вып. 4) мы знаем, что электромагнитные взаимодействия симметричны по отношению к отражению. При вычислении магнитных сил между двумя наборами токов результат всегда инвариантен по отношению к перемене рук. Наши уравнения, независимо от условия правой руки, приводят к конечному результату, что параллельные токи притягиваются, а противоположные — отталкиваются. (Попробуйте вычислить силу с помощью «пра­вила левой руки».) Притяжение или отталкивание есть поляр­ный вектор. Так получается потому, что при описании любого полного взаимодействия мы пользуемся правилом правой руки дважды — один раз, чтобы найти В из токов, а затем, чтобы найти силу, оказываемую полем В на второй ток. Два раза пользоваться правилом правой руки — все равно что два раза пользоваться правилом левой руки. Если бы мы условились перейти к системе левой руки, все наши поля В изменили бы знак, но все силы или (что, пожалуй, нагляднее) наблюдаемые ускорения объектов не изменились бы.

Хотя физики недавно, к своему удивлению, обнаружили, что не все законы природы всегда инвариантны по отношению к зеркальным отражениям, тем не менее законы электромаг­нетизма обладают этой фундаментальной симметрией.

* Или, короче,─ тесла. ─ прим. ред.

*Потом мы увидим, что такие предположения, вообще говоря, неправильны для электромагнитных сил!

*Это и есть магнитная проницаемость пустоты.

Глава 14

МАГНИТНОЕ ПОЛЕ В РАЗНЫХ СЛУЧАЯХ

§1.Векторный потенциал

§2.Векторный потенциал заданных токов

§3. Прямой провод

§4.Длинный соленоид

§5.Поле маленькой петли; магнитный диполь

§6. Векторный потенциал цепи

§7.3акон Био—Савара

§ 1, Векторный потенциал

В этой главе мы продолжим разговор о магнитостатике, т, е. о постоянных магнитных полях и постоянных токах. Магнитное поле и электрические токи связаны нашими основными уравнениями:

(14.1)

и

(14.2)

На этот раз нам нужно решить эти уравне­ния математически самым общим образом, а не ссылаться на какую-нибудь особую симметрию или на интуицию. В электростатике мы нашли прямой способ вычисления поля, когда из­вестны положения всех электрических зарядов: скалярный потенциал j дается просто инте­гралом по зарядам, как в уравнении (4.25) на стр. 77. Если затем нужно знать электри­ческое поле, то его получают дифференцирова­нием j. Мы покажем сейчас, что для нахожде­ния поля В существует аналогичная процедура, если известна плотность тока j всех движу­щихся зарядов.

В электростатике, как мы видели (из-за того, что rot от Е везде равен нулю), всегда можно представить Е в виде градиента от ска­лярного поля j. А вот rot от В не везде равен нулю, поэтому представить его в виде градиента, вообще говоря, невозможно. Однако диверген­ция В везде равна нулю, а это значит, что мы можем представить В в виде ротора от другого векторного поля. Ибо, как мы видели в гл. 2, § 8, дивергенция ротора всегда равна нулю. Следовательно, мы всегда можем выразить В через поле, которое мы обозначим А:

(14.3)

Или, расписывая компоненты:

(14.4)

Запись B=СXA гарантирует выполнение (14.1), потому что обязательно

Поле А называется векторным потенциалом.

Вспомним, что скалярный потенциал j оказывается не полностью определенным. Если мы нашли для некоторой зада­чи потенциал j, то всегда можно найти столь же хороший дру­гой потенциал j', добавив постоянную:

Новый потенциал j' дает те же электрические поля, потому что градиент СС есть нуль; j' и j отвечают одной и той же картине.

Точно так же у нас может быть несколько векторных по­тенциалов А, приводящих к одним и тем же магнитным полям. Опять-таки, поскольку В получается из А дифференцированием, то прибавление к А константы не меняет физики дела. Но для А свобода больше. Мы можем добавить к А любое поле, которое есть градиент от некоторого скалярного поля, не меняя при этом физики. Это можно показать следующим образом. Пусть у нас есть А, которое в какой-то реальной задаче дает правиль­ное поле В. Спрашивается, при каких условиях другой век­торный потенциал А', будучи подставлен в (14.3), дает то же самое поле В. Значит, А и А' имеют одинаковый ротор