Фиг. 10.9. Сила, действующая на диэлектрик в плоском конденсаторе, может быть вычислена с помощью закона сохранения энергии.
Есть еще одна близкая задача, в которой сила, действующая на диэлектрик, может быть найдена точно. Если мы возьмем плоский конденсатор, в котором плитка диэлектрика задвинута лишь частично (фиг. 10.9), то возникнет сила, вдвигающая диэлектрик внутрь. Провести детальное исследование силы очень трудно; оно связано с неоднородностями поля вблизи концов диэлектрика и пластин. Однако если мы не интересуемся деталями, а просто используем закон сохранения энергии, то силу легко вычислить. Мы можем определить силу с помощью ранее выведенной формулы. Уравнение (10.28) эквивалентно
(10.30)
Нам осталось только найти, как меняется емкость в зависимости от положения плитки диэлектрика.
Пусть полная длина пластин есть L, ширина их равна W, расстояние между пластинами и толщина диэлектрика равна d, а расстояние, на которое вдвинут диэлектрик, есть х. Емкость есть отношение полного свободного заряда на пластинах к разности потенциалов между пластинами. Выше мы видели, что при данном потенциале V поверхностная плотность свободных зарядов равна
xe0V/d. Следовательно, полный заряд пластин равен
откуда мы находим емкость
(10.31)
С помощью (10.30) получаем
(10.32)
Но пользы от этого выражения не очень много, разве только вам понадобится определить силу именно в таких условиях. Мы хотели лишь показать, что можно подчас избежать страшных осложнений при определении сил, действующих на диэлектрики, если пользоваться энергией, как это было в настоящем случае.
В нашем изложении теории диэлектриков мы имели дело только с электрическими явлениями, принимая как факт, что поляризация вещества пропорциональна электрическому полю. Почему возникает такая пропорциональность — вопрос, представляющий, пожалуй, еще больший интерес для физики. Стоит нам понять механизм возникновения диэлектрической проницаемости с атомной точки зрения, как мы сможем использовать измерения диэлектрической проницаемости в изменяющихся условиях для получения подробных сведений о строении атомов и молекул. Эти вопросы будут частично изложены в следующей главе.
Глава 11
ВНУТРЕННЕЕ УСТРОЙСТВО ДИЭЛЕКТРИКОВ
§1. Молекулярные диполи
§2. Электронная поляризация
§3. Полярные молекулы; ориентационная поляризация
§4. Электрические поля в пустотах диэлектрика
§5. Диэлектрическая проницаемость жидкостей; формула Клаузиуса — Моссотти
§6. Твердые диэлектрики
§7. Сегнетоэлектричество; титанат бария
Повторить: гл. 3 (вып. 3) «Как возникает показатель преломления», гл. 40 (вып. 4) «Принципы статистической механики »
§ 1. Молекулярные диполи
В этой главе мы поговорим о том, почему вещество бывает диэлектриком. В предыдущей главе мы указывали, что свойства электрических систем с диэлектриками можно было бы понять, предположив, что электрическое поле, действуя на диэлектрик, индуцирует в атомах дипольный момент. Именно, если электрическое поле Е индуцирует средний дипольный момент в единице объема Р, то диэлектрическая проницаемость х дается выражением
(11.1)
О применениях этого выражения мы уже говорили; сейчас же нам нужно обсудить механизм возникновения поляризации внутри материала под действием электрического поля. Начнем с самого простого примера — поляризации газов. Но даже в газах возникают сложности: существуют два типа газов. Молекулы некоторых газов, например кислорода, в каждой молекуле которого имеются два симметричных атома, лишены собственного дипольного момента. Зато молекулы других газов, вроде водяного пара (у которого атомы водорода и кислорода образуют несимметричную молекулу), обладают постоянным электрическим дипольным моментом. Как мы отмечали в гл. 6 и 7, в молекуле водяного пара атомы водорода в среднем имеют положительный заряд, а атом кислорода — отрицательный. Поскольку центры тяжести положительного и отрицательного зарядов не совпадают, то распределение всего заряда в молекуле обладает дипольным моментом.