О масштабах фотосинтеза и его значении в природе можно судить уже по одному количеству солнечной энергии, перехватываемой зелеными листьями и «законсервированной» в растениях. Ежегодно только растения суши запасают в виде углеводов столько энергии, сколько могли бы израсходовать сто тысяч больших городов в течение 100 лет!
О значении и сущности фотосинтеза говорил еще К. А. Тимирязев в 1878 году в своей знаменитой книге «Жизнь растений». «Когда-то, где-то на Землю упал луч солнца, но упал он не на бесплодную почву, он упал на зеленую былинку пшеничного ростка, или лучше сказать на хлорофилловое зерно. Ударяясь о него, он потух, перестал быть светом, но не исчез. Он только затратился на внутреннюю работу. В той или иной форме он вошел в состав хлеба, послужившего нам пищей. Он преобразовался в наши мускулы, в наши нервы. Этот луч согревает нас. Он приводит нас в движение. Быть может, в эту минуту он играет в нашем мозгу…» Слова эти не устарели до сих пор. За прошедшие годы они лишь уточнились и дополнились новыми данными о дыхании.
У растений дыхание в основе своей — процесс, противоположный фотосинтезу. Молекула сахара глюкозы окисляется кислородом воздуха до углекислого газа и воды с выделением заключенной в углеводах энергии. Эта энергия идет на осуществление и поддержку всех жизненных процессов: поглощение и испарение воды и минеральных солей, рост и развитие растений.
Именно в освобождении энергии и направлении ее на нужды растений и заключается главный смысл дыхания, которое происходит во всех живых клетках растений.
По сути, дыхание поддерживает саму жизнь на Земле! Но как именно это происходит? За счет какой формы энергии? Не вдаваясь в подробности, скажем лишь, что весь смысл дыхания состоит в образовании аденозинтрифосфорной кислоты или сокращенно АТФ — органического вещества, в состав которого входят азотистое основание аденин, пятиуглеродистый сахар рибоза (вместе они составляют аденозин) и три остатка фосфорной кислоты, соединенные между собой фосфатной связью, при распаде которой и освобождается энергия, необходимая для всего живого на Земле.
Образно это можно сравнить с работой аккумуляторной батареи, которая отдает энергию по потребности и снова заряжается у растений за счет солнечной энергии при фотосинтезе.
Срез листа под микроскопом. По мере поступления воды тонкие наружные стенки клеток растягиваются и тянут за собой более толстые внутренние. В это время устьица (отверстия) открываются: из листа выделяется кислород, а поступает в него углекислый газ.
Солнце в течение дня меняет свое положение, описывая траекторию дуги примерно 60° зимой и 120° и более летом. Это надо учитывать при выборе места для теплицы.
Чтобы в теплицу проникало максимальное количество солнечного света, он должен падать под прямым углом к световому потоку.
Практически выходит, что урожай растений — это разница между фотосинтезом и дыханием: чем выше фотосинтез и ниже дыхание, тем выше урожай, и наоборот. В природе фотосинтез меняется сравнительно мало. Зато дыхание может возрастать в сто и даже тысячу раз. К тому же соотношение между производящими и потребляющими частями растений строится по принципу: один с сошкой (фотосинтез) — семеро с ложкой (дыхание). В самом деле, ведь фотосинтез идет только в листьях и только днем на свету, тогда как дышат растения круглые сутки, а накопление органических веществ (основы урожая) возможно лишь при условии, что фотосинтез намного превышает дыхание. К великому сожалению, это бывает значительно реже, чем хотелось бы.
К тому же все это мы рассматриваем сейчас в несколько упрощенном виде. На самом деле растение — единый целостный организм, в котором все процессы тесно взаимосвязаны, с одной стороны, друг с другом, с другой — с окружающей их внешней средой: светом, теплом, влагой. Влияние внешних условий на любое растение сложно, ведь в природе все условия действуют на растение одновременно. И пока мы не знаем, где же кончается действие одного из них и начинается действие другого и какое именно условие оказывается решающим в данный период роста и развития растения.
Чтобы ответить на этот вопрос и были сооружены огромные оранжереи с полностью управляемым климатом — климатроны. Один из них — климатрон Миссурийского ботанического сада в городе Сент-Луисе (США), построенный видным американским ученым Ф. Вентом. Он установил, что из всех внешних условий решающим фактором роста томатов является ночная температура. Если ночью она поднималась выше 24 или опускалась ниже 16 градусов, плоды вообще не завязывались. Ночная температура оказалась решающей и для урожая картофеля. Клубни лучше всего образовывались при температуре ночью около 12 градусов. Именно поэтому в жаркое лето 1999 года во многих зонах нашей страны, в том числе в Подмосковье, урожай картофеля снизился вдвое по сравнению с прошлыми годами.
Температура часто оказывается едва ли не «главным врагом» будущего урожая, причем не только тогда, когда бывает слишком низкой, но и в тех случаях, когда намного превышает оптимальную. Немецкие ученые X. Лир, Г. Польстер установили, что в ясные солнечные дни для получения урожая наиболее продуктивны ранние утренние часы, когда температура воздуха не превышает 20–25 °C. Прирост органической массы в это время в 30 раз больше, чем при более высоких температурах.
Живая изгородь высотой не более 1,8 метра, растущая к югу и западу от теплицы снизит силу преобладающих ветров, не вызывая затенения. Забор с северной стороны, поставленный близко к теплице, не отбрасывает тень.
И это вполне понятно и объяснимо. Именно в утренние часы фотосинтез достигает своего максимума, тогда как дыхание, сильно зависящее от температуры, становится минимальным. Вот почему растения особенно отзывчивы на утренние поливы. Воды, особенно огурцам, томатам, кабачкам, требуется много и желательно не очень холодной.
В совершенно необычную и непривычную среду попадают растения при выращивании их в закрытом грунте. В условиях теплиц все внешние факторы нередко начинают работать как бы против растений. Пытаясь с помощью обыкновенной пленки защитить растения от холода, мы никак не можем избавить их от перегрева, что сделать намного труднее. Ведь даже весной температура в теплицах иногда превышает оптимальную (около 20 градусов). Что же говорить о периоде апрель — август?
В пасмурные дни теплица невольно превращается для растений в темницу, скупые лучи солнца едва проникают сквозь пленку. Из-за нехватки света фотосинтез резко падает, тогда как дыхание идет своим чередом, нередко перекрывает фотосинтез и заметно снижает будущий урожай.
Другая беда подстерегает растения в теплице в ясные теплые солнечные дни. Теплица превращается в такие дни в раскаленную пустыню. «Перегрев» листьев и нехватка углекислого газа — основного «сырья» для создания углеводов — приводят к резкому падению фотосинтеза. Напомним, что в воздухе содержится всего лишь 0,03 % углекислого газа, или 3 части на 10 тысяч частей воздуха, и нехватка этого газа в теплицах в дневные часы — вполне обычное дело. Зато в сто и даже тысячу раз (в зависимости от температуры) возрастает дыхание. Естественно, что в эти часы о накоплении углеводов не может быть и речи. Наоборот, растение теряет даже то, что было накоплено в более благоприятное время.
А что необходимо делать садоводу? Прежде всего, регулярно следить за температурой с помощью размещенных внутри и снаружи теплицы термометров или, что лучше, психрометров (приборов с двумя термометрами, у одного из которых резервуар обтянут влажной материей), позволяющих одновременно наблюдать за температурой и относительной влажностью воздуха, что очень важно. Для защиты от перегрева хорошо иметь с обеих торцовых стен теплицы широкие двери. Вместе со свежим холодным воздухом через приоткрытые двери устремляется в теплицу поток углекислого газа, что заметно повышает фотосинтез, особенно при нехватке света.