Давайте познакомимся с некоторыми важными свойствами атомов. Установлено, что атомы могут поглощать определенное количество энергии (например, световой). Если атомы какого-либо вещества поглотят некоторую порцию энергии, то они переходят в возбуждённое состояние. При дальнейшем сообщении возбуждённым атомам строго определённых порций энергии (такой процесс называется «подкачкой») происходит обратное: атомы начинают испускать поглощенную ранее энергию. Световой поток состоит из «зёрнышек энергии», называемых фотонами или квантами, причём величина энергии фотонов, говоря упрощенно, зависит от цвета светового излучения (точнее от длины электромагнитной волны). Атомы некоторых веществ можно «подкачать» световыми лучами или энергией фотонов, позднее они сами будут испускать мощный свет. Таков принцип действия лазера, конечно, с большим упрощением.
Вполне понятно, что не из любого вещества можно изготовить лазер. Первые лазеры были рубиновыми (пожалуй, не стоит напоминать, что рубин — это драгоценный камень красного цвета). «Сердцем» такого лазера был рубиновый стержень с гладко отшлифованными торцами, расположенными в строго параллельных плоскостях. Торцы стержня покрываются серебром, причём левый торец делается непрозрачным, а правый (выходной) — полупрозрачным, чтобы отраженные световые лучи испускались только в одном направлении. Вокруг стержня располагается спиральная газосветная лампа, служащая для «подкачки» атомов рубина. Поглощая свет лампы, атомы рубина возбуждаются, а затем сами испускают красный свет. Лавина фотонов красного света быстро нарастает и, наконец, прорывается через полупрозрачный торец наружу, т. е. создаётся мощное и строго направленное красное излучение, называемое лазерным лучом. До сравнению с фантастическим светом гиперболоида инженера Гарина лазеры нашли значительно более широкое применение, причём в очень короткое время.
Случалось, что новые открытия и изобретения не сразу находили практическое применение. Например, выдающийся американский изобретатель Томас Эдисон сделал в 1883 году очень важное открытие: он заметил, что электрический ток может проходить через вакуум электролампы даже в том случае, если электрическая цепь разомкнута. Учёный сам не знал, как можно использовать данное открытие. И лишь спустя 20 лет, открытие Эдисона помогло сконструировать первые электронные лампы. А вот и второй пример. В 1911 году голландский физик Гейк Камерлинг-Оннес открыл, что некоторые металлы, опущенные в жидкий гелий, полностью теряют электрическое сопротивление. Такое явление назвали сверхпроводимостью, и хотя оно интересовало многих учёных, почти 50 лет не было использовано. Лишь в последнее десятилетие учёные занялись разработкой явления сверхпроводимости и доказали возможность создания поистине необычайных электронных и радиотехнических устройств.
Судьба лазеров совсем другая. Первые лазеры были созданы в 1960 году. В настоящее же время существует много лазеров различных типов, широко используемых в науке, технике и медицине. Кроме рубиновых лазеров известны газовые (неоновые, гелиевые, аргоновые, криптоновые и др.) и полупроводниковые. Одни лазеры испускают излучение с перерывами в виде следующих друг за другом импульсов, другие создают непрерывное излучение. Изготовляются лазеры большой и малой мощности (подобно тому, как лампочки бывают сильные» и «слабые»).
Одним словом, семья лазеров стала очень многочисленной, а изучением все более совершенных лазеров занимается особая отрасль электроники, им посвящаются специальные журналы.
Ну, а о возможностях применения лазеров можно написать целую книгу, большую и очень интересную.
Давайте хотя бы вкратце познакомимся с этим. Когерентность лазерного излучения позволяет использовать его для передачи на большие расстояния различной информации, например, для телевизионных и радиопередач. С помощью лазерной связи, конечно, при наличии сложных устройств смогут передавать десятки тысяч телефонных разговоров и сотни радиопрограмм одновременно.
Высокая направленность лазерного излучения позволила применить его для радиолокации Венеры и Марса. В печати появилось около 100 статей относительно применения лазеров в биологии и медицине. Я приведу лишь два примера. Пожалуй, каждый, из нас неохотно посещает зубоврачебный кабинет, особенно если мы знаем, что врач будет сверлить больной зуб. Представьте себе, что скоро вместо бормашины стоматологи будут пользоваться лазером, а пациенты абсолютно ничего не будут чувствовать. Это ждёт нас в ближайшем будущем, а в настоящее время хирурги — глазники приклеивают сетчатую оболочку к глазному дну, если она отклеится, с помощью лазера.