Выбрать главу

Большинство найденных планетных систем совершенно не похожи на нашу. Найденные планеты по своим свойствам напоминают планеты-гиганты Солнечной системы. Сказывается эффект наблюдательной селекции. Во-первых, чем массивнее планета, тем большее влияние она будет оказывать на свою звезду и тем большими будут изменения ее лучевой скорости. Легче всего открывать планеты с массой порядка массы Юпитера (1MJ0.001Mo) или больше. Во-вторых, чем короче период обращения Тр1, тем проще его обнаружить. При наблюдениях спектра звезды в течение месяца или двух уже можно увидеть периодические изменения в ее лучевой скорости, вызванные планетой. Некоторые планеты с массами 1–2 MJ имеют периоды обращения вокруг звезды чуть более суток, а их расстояние от звезды примерно в 40 раз меньше, чем расстояние от Земли до Солнца. Естественно, столь близкие к звездам планеты будут сильно нагреваться. Поэтому их называют “горячие Юпитеры”.

Орбиты внесолнечных планет сильно различаются по величине эксцентриситета е. В Солнечной системе у большинства планет эксцентриситет орбиты небольшой. Так, у Земли орбита почти круговая е = 0.0167. Более всего вытянуты орбиты у Меркурия (е = 0.21) и Плутона (е = 0.24). В то же время в других планетных системах есть планеты с очень вытянутыми орбитами, с эксцентриситетом до 0.7.

Блестящим подтверждением результатов доплеровского метода явилось наблюдение затмения у звезды HD 209458. У нее планета с массой 1.43MJ была ранее обнаружена по изменениям лучевой скорости. По найденным параметрам орбиты были предсказаны ожидаемые моменты затмений. Продолжительность “затмения” — несколько часов. Планета у HD 209458 короткопериодическая, период обращения всего 3.5 суток; поэтому такие затмения можно наблюдать очень часто. Первые успешные результаты дал и транзитный метод в рамках программы OGLE: у четырех звезд солнечного типа найдены короткопериодические планеты.

Большинство звезд, у которых к настоящему времени открыты планеты, принадлежат к спектральному классу G главной последовательности; среди них есть также несколько красных карликов класса М. Обнаружение планет у красных гигантов — гораздо более трудная задача. Здесь не подходит ни один из перечисленных выше методов. Все известные яркие красные гиганты — звезды высокой светимости — находятся на расстояниях в сотни парсеков от Земли. Их собственные движения очень малы. Для того чтобы найти в их движении малые отклонения, вызванные планетой, нужны сотни и тысячи лет высокоточных астрометрических наблюдений. Доплеровский метод годится лишь для относительно ранних красных гигантов, принадлежащих к спектральному классу К. Только у этих звезд можно найти в спектре достаточно узкие и резкие атомарные линии поглощения, которые дадут возможность измерять лучевую скорость звезды с необходимой точностью. К более поздним звездам классов М, S, С с переходом на АВГ доплеровский метод становится неприменимым. Безнадежно также искать затмения: планета закрывает малую часть огромного диска красного гиганта, и блеск звезды во время затмения ослабеет на ничтожную величину — собственные вариации блеска красных гигантов гораздо больше. Прямые наблюдения планет у красных гигантов вряд ли возможны по причине большой удаленности этих звезд. Тем не менее, по косвенным признакам все же можно определить, обладает ли красный гигант на стадии АВГ планетой. Как — об этом в следующих разделах.

Судьба планетной системы

Итак, после нескольких миллиардов лет, проведенных на главной последовательности, звезда с массой, близкой к солнечной, перейдет в стадию красного гиганта. Радиус звезды возрастет сначала в несколько десятков, затем в несколько сотен раз и достигнет одной астрономической единицы (а.е.). Если у звезды была планетная система, то на стадии АВГ более близкие планеты, с большими полуосями орбит а < 1 а. е., окажутся погруженными в атмосферу звезды. Планеты внутри этой зоны (в нашей системе это Меркурий и Венера) будут поглощены расширившейся атмосферой звезды, затормозятся в ней и, двигаясь по спиральной траектории к центру звезды, испарятся. Первыми сгорят “горячие Юпитеры”, движущиеся на орбитах с большими полуосями в сотые доли астрономической единицы. Более удаленные планеты (такие, как Марс, Юпитер, Сатурн и т. д.), скорее всего, выживут. Неясна судьба планет, удаленных на а ~ 1 а. е., в том числе Земли. Конечный результат в значительной степени зависит от принятой модели эволюции звезды, в том числе нашего Солнца. Уменьшение радиуса звезды на несколько процентов может дать нашей планете шанс пережить стадию АВГ Солнца. Если же радиус Солнца как красного гиганта окажется на несколько процентов больше, наша планета погибнет. Такое событие для стороннего наблюдателя может не пройти незамеченным. Пример тому — возможное поглощение планетной системы звездой V838 Единорога. В 2002 году эта звезда испытала подряд три вспышки с интервалом в несколько месяцев. До этого V838 Единорога, вероятнее всего, относилась к звездам главной последовательности класса F. После вспышки она эволюционирует к более низким температурам и более поздним спектральным классам. Большинство исследователей сочли звезду пекулярной новой. Была предложена и другая интерпретация: при быстром переходе к стадии красного гиганта V838 Единорога поглотила одну за другой три планеты, обращавшиеся на близких орбитах; удалось, таким образом, увидеть редчайший случай гибели целой планетной системы.