Выбрать главу

Механизм переменности звезд до конца не выяснен. Из существующих публикаций можно сделать вывод, что причиной переменности красных гигантов — мирид, является изменение непрозрачности и (или) температуры атмосферных слоев, ответственных за основное излучение в континууме. В предыдущих моделях явно или неявно подразумевалось, что эти изменения вызваны периодическим прохождением ударных волн, которые создаются пульсациями звезды. Еще в 1950-е гг. делались попытки создать теорию переменности мирид, аналогичную теории для цефеид. Удовлетворительной модели пульсаций мирид нет до сих пор.

Остаток сверхновой (фото Hubble)

Имеется ряд работ с нетрадиционными объяснениями механизма переменности звезд типа Миры. Один из них — вращение красного гиганта с неоднородным распределением поверхностной яркости, с крупными темными конвективными ячейками.

В последние годы автором статьи и (независимо) французским астрономом Полем Берлиоз-Арто предложен альтернативный механизм переменности мирид. Причиной вариаций блеска может быть локальный разогрев атмосферы мириды близкимспутником (планетой или коричневым карликом).

А Период обращения спутника на круговой орбите с большой полуосью а = 1 а.е. (астрономической единицы) вокруг звезды с массой М* = 1 Мо — один год. Если спутник обращается вокруг звезды на более низкой орбите, он тонет в атмосфере звезды, опускаясь ниже уровня, где оптическая толща атмосферы достигает единицы. Если спутник далеко, среда, в которой он движется, недостаточно плотная, и он не оказывает большого воздействия на блеск и спектр звезды. Таким образом, большие полуоси размером чуть менее одной а.е. наиболее благоприятны для проявлений взаимодействия спутника с атмосферой красного гиганта. Отсюда максимум в распределении периодов мирид вблизи соответствующего периода Р = 284 дня.

«Огненный шар», возникающий вокруг спутника, своим излучением создает «горячее пятно» в атмосфере гиганта. За спутником тянется ионизованный «хвост», такой же, как при движении крупного метеорита в земной атмосфере. В «горячем пятне» сосредоточена область генерации оптических эмиссионных линий, регулярно появляющихся в спектрах мирид. При орбитальном движении спутника пятно перемещается по поверхности красного гиганта. Если угол наклона плоскости орбиты к картинной плоскости не очень мал, переменность блеска звезды и интенсивности эмиссионных линий может быть объяснена периодическими появлениями «горячего пятна» из-за лимба и заходами за лимб. В рамках данной концепции непеременные или «слабопеременные» красные гиганты — полуправильные звезды с малыми амплитудами переменности — могут менять блеск за счет собственных слабых хаотических колебаний. У мирид переменность большой амплитуды создается в первую очередь воздействием спутника, а все нерегулярности кривой блеска могут быть отнесены на счет хаотических собственных вариаций красного гиганта.

Косвенным подтверждением влияния планет на долгопериодическую переменность красных гигантов может быть редкость (или даже полное отсутствие) мирид в старых подсистемах Галактики с низкой металличностью, т. е. в шаровых скоплениях и в галактическом гало. Низкометалличная среда не способствует образованию планет, для чего требуются тяжелые элементы. Подтверждением этого также служит видимое отсутствие звезд с планетами в шаровых скоплениях. На Космическом телескопе им. Хаббла был специально поставлен эксперимент по исследованию кратковременных снижений блеска 34 тысяч звезд в шаровом скоплении 47 Тукана. Такие ослабления блеска предположительно могли бы указывать на наличие планет, «затмевающих» свои звезды. Авторы эксперимента Р. Джиллиленд и др. проводили систематические наблюдения за скоплением 47 Тукана в течение восьми суток в июле 1999 г. Ни у одной звезды из 47 Тукана не было затмений, хотя по статистике наклонов орбит затмения должны были наблюдаться по меньшей мере у 15–20. Еще одна возможная причина отсутствия планетных систем у звезд шаровых скоплений — отрыв планет от звезд при близких их прохождениях. Итак, нет планетных систем — нет и переменных звезд типа Миры.