Поглощаясь в тонком поверхностном слое материала ракеты, рентгеновское излучение вызывает его взрывообразное испарение, приводящее к образованию ударной волны и разрушению корпуса. Так как мягкое рентгеновское излучение имеет малую длину волны и эффективно поглощается в атмосфере, ядерно-лазерные устройства целесообразно применять на высоте более 110–120 км.
Рентгеновский лазер предполагалось применять при отражении массовой атаки ракет противника. Чтобы сорвать атаку около полутора тысяч МБР, находящихся в то время на вооружении СССР, необходимо было вывести в космос 30 боевых станций, оснащенных боеголовками с рентгеновским лазером.
Подземные ядерные взрывы на полигоне «Невада» должны были проложить путь к созданию этого космического оружия. Первое испытание под кодовым названием «Дофин» в ноябре 1980 г. показало, что выход рентгеновского излучения явно недостаточен для поражения ракет противника. Серия подземных взрывов «Экскалибур», «Супер-Экскалибур», «Коттедж» преследовали главную цель — добиться концентрации излучения энергии в определенном направлении. Успешной фокусировки излучения добились методом «скользящего отражения» в ходе испытания в декабре 1983 года под кодовым названием «Романо».
В день второй годовщины рейгеновского выступления, посвященного программе СОИ — 23 марта 1985 года — было проведено очередное испытание и было объявлено, что на этот раз удалось получить небывалую яркость излучения. Однако, вскоре выяснилось, что это фальсификация с целью заручиться поддержкой президента и конгрессменов на продолжение испытаний.
Последующие подземные взрывы были проведены в декабре 1985 года («Голдстоун») мощностью 150 килотонн и в апреле 1986 года («Майти оук»).
Подписание в 1997 году Договора о всеобъемлющем запрещении ядерных испытаний серьезно осложнило планы США в отношении создания лазера с ядерной накачкой. Трудности в связи с созданием рентгеновского лазера оказались чрезвычайно велики, и для их преодоления необходимо проведение большого количества ядерных испытаний, порядка сотни. Возможно, одним из побудительных мотивов для отказа США ратификации ДВЗЯИ как раз является намерение зарезервировать в будущем возможность проведения таких взрывов.
Эти лазеры работают на принципе использования магнитотормозного излучения ускоренных частиц (синхротронный эффект, наблюдаемый при изменении направления их движения).
Для получения лазерного излучения пропускают пучок высокоэнергетических монохроматических (обладающих одинаковой энергией) электронов через специальное устройство — «магнитную гребенку», или «вигглер», заставляющее электроны совершать синусоидальные колебания с заданной частотой. «Магнитная гребенка» представляет собой набор магнитов, создающих переменное магнитное поле. Попадая в поперечное магнитное поле, электроны в результате «тормозного эффекта» испускают излучение определенной длины волны. Длина волны излучения зависит от энергии электронов и характеристики «магнитной гребенки». Изменяя эти параметры, можно получить на выходе излучение с разной длиной волны.
Этот лазер может обладать высоким коэффициентом полезного действия — 20 %, но из-за большого веса и габаритов ускорителя электронов, создающего электронный пучок, лазерная установка будет размещаться на Земле. Длина волны излучения может быть выбрана в диапазоне 0.5–0.6 мкм, т. е. внутри «окна» прозрачности атмосферы. Излучение должно переотражаться орбитальным зеркалом на ракету на участке ее разгона.
Основные трудности в создании лазерного оружия на свободных электронах связаны с необходимостью получения большой мощности излучения.
Сейчас испытания такого лазера проводят в Ливерморской лаборатории на линейном ускорителе длиной 77 метров. Фирмы «Боинг» и TRW подключились к проведению опытно-конструкторских работ, подписав контракт с Пентагоном.
С 1996 года разрабатывается проект под названием Airborne Laser (ABL). Лазер, созданный в рамках проекта, должен будет уничтожать баллистические ракеты средней дальности.