Выбрать главу

Валентин Петрович Глушко.

Энергия такого взрыва была использована В. П. Глушко в миниатюрном электрическом реактивном двигателе (ЭРД), разработанным в начале 1930-х годов. Двигатель легко умещался на ладони. В него поступала металлическая проволока и подавались электрические импульсы, превращающие ее в пар. Этот пар выходил через специальное сопло со скоростью в несколько десятков тысяч метров в секунду. Для космонавтики это значит очень многое.

Чтобы достичь второй космической скорости (11 км/с), вес топлива, баков и корпуса ракеты на керосине и жидком кислороде должен составлять более 99 % ее стартового веса. Таким образом, на долю полезного груза приходится лишь сотая часть. Это связано с недостаточно большой скоростью истечения продуктов сгорания, около 3 400 м/с. Если же взять ЭРД со скоростью истечения 25–30 км/с, то вес полезной нагрузки может увеличиться в 20 раз! Для полета на Марс требуется скорость 30 км/с. И здесь без ЭРД не обойтись.

ЭРД конструкции В. П. Глушко.

Проект полета к Марсу на ЭРД, разработанный в 1969 году.

Тогда вопрос: почему же мы сегодня не гуляем по Марсу, коли необходимый для этого двигатель существовал еще в 1932 году? Причин много. Вот хотя бы некоторые. ЭРД способен работать только в пустоте космического пространства. В обычной лаборатории вытекающая из него струя испарившегося металла смешивалась с воздухом и теряла скорость. Так, что даже тягу двигателя нельзя было достоверно измерить. Лет через 20 подобные двигатели стали испытывать в специальных, очень дорогих вакуумных камерах.

Оказалось, что тяга подобных двигателей очень мала. Ее недостаточно даже для отрыва (только лишь двигателя!) от земли. Тогда зачем же они нужны? Они нужны для «неторопливого», длительного разгона в невесомости. Смотрите! Если на тело массой 1 кг длительно действует сила 0,01 н (1 г), то через 28 часов оно приобретет скорость артиллерийского снаряда — 1 км/с, через 32 дня — 8 км/с (это первая космическая скорость), через 4 месяца — 30 км/с (третья космическая скорость), позволяющую лететь на Марс или вообще покинуть Солнечную систему. При этом для того, чтобы за

4 месяца набрать скорость 30 км/с, двигатель должен потреблять мощность… 300 Вт. Не так много, в 3 раза меньше мощности утюга! Но у утюга есть розетка, а где взять розетку в космосе?

В качестве источника энергии для ракеты, оснащенной ЭРД, В. П. Глушко предложил использовать фотоэлементы. Ракета, оснащенная такими двигателями, самостоятельно выйти в космос не может. Для старта должен применяться другой двигатель. Но после выхода в космическое пространство «солнечная» ракета, оснащенная ЭРД, могла бы за несколько суток набрать такую скорость, которая недоступна для ракет любых других типов. Подобная схема полета на Марс ныне рассматривается в российском проекте высадки космонавтов на Красную планету.

ВЕСТИ С ПЯТИ МАТЕРИКОВ

КРУПНЕЙШИЙ В МИРЕ спиральный эскалатор запустили японские инженеры. Такие эскалаторы встречаются довольно редко ввиду их сложности. А конструкция, возведенная в торговом центре New World Daimaru Department Store, вообще поражает воображение — дюжина изогнутых эскалаторов образует две огромные винтовые лестницы в центральном атриуме.

Японская компания Mitsubishi Electric является единственным в мире производителем спиральных эскалаторов. Ее инженеры впервые разработали спиральный эскалатор еще в 1985 году и с тех пор выполнили 103 заказа по всему миру, самым крупным из которых стал проект для Шанхая.

Плавность хода достигнута посредством специально разработанных цепей, которые могут реагировать на разные углы движения, а направляющие ступеней и поручней сделаны с применением специальных технологий для достижения оптимальной гибкости.

САМЫЙ БОЛЬШОЙ АВТОКЛАВ в мире создан в Японии. Он предназначен для изготовления деталей пассажирских авиалайнеров. Изготовила это уникальное оборудование промышленная корпорация Kawasaki Heavy Industries Ltd.