Выбрать главу

структуры. Для зрения необходимо, чтобы все части глаза имели уникальные трехмерные формы и были точно выровнены по продольной оси органа. Иначе мы попросту не смогли бы видеть. За это и отвечают гены гравитации.

Тот же механизм лежит в основе правильного формирования тканей в развивающемся организме.

Человеческий глаз состоит из линзы и куполообразной

Кандидата в космонавты готовят к экспериментам на центрифуге.

Один из соавторов разработки, доктор Штефан Бегби, сказал на пресс-конференции журналистам: «Сегодня мы можем выращивать 3D-скопления клеток в лаборатории, но не можем воспроизвести точные структуры отдельных тканей, необходимых для выращивания таких сложных органов, как глаза или сердце. На основе обнаруженной роли гена YAP мы надеемся воздействовать на выращиваемые ткани с целью создания сложных органов для дальнейшей пересадки».

Правда, как именно работает антигравитационный ген, как и когда он включается, какие другие гены находятся у него в подчинении, исследователям еще только предстоит выяснить.

Дальнейшие эксперименты, как надеются ученые, не только позволят узнать, почему мы стали выглядеть так, как выглядим сейчас, но и помогут разработать надежные методы создания искусственных органов. Управляя генетической системой, отвечающей за «объемность» органа, трансплантологи, например, смогут выращивать в лаборатории печень или почку точно таких размеров, какие нужны данному конкретному пациенту.

Контроль над генами гравитации, очевидно, помог бы и космонавтам, которым при взлете и посадке приходится переносить немалые перегрузки. Пока же их спасают специальные перегрузочные кресла с индивидуальными ложементами, которые изготавливают для каждого члена экипажа. Процедура, кстати, весьма любопытная. Начинается все с того, что космонавт ложится в специальную ванну с теплым жидким гипсом. Потом гипс застывает, и точно по форме тела каждого космонавта изготавливают ложементы.

При длительных экспедициях космонавты прилетают на станцию на одном «Союзе», а улетают на другом. В этих случаях они всегда переносят свои ложементы из одного корабля в другой.

Золотая луковица

Мы уже не раз рассказывали вам, каким образом и для каких целей исследователи пытаются создать искусственные мускулы. Робототехника, протезирование и даже нанотехнологии нуждаются в создании мышц, способных преобразовать электрическую энергию в энергию механического движения.

Для изготовления искусственных мускулов исследователи применяют всевозможные материалы на основе диоксида ванадия, электроактивные эластомеры, скрученные нанотрубки и даже «мятый» графен. Однако проблема заключается в том, что, как правило, такие мускулы способны либо с усилием расширяться, либо, напротив, только сокращаться.

И лишь недавно ученые из Национального университета Тайваня успешно решили эту проблему, сообщает издание Applied Physics Letters. «Сейчас существует множество способов создания искусственных мышц, — пишет в своей статье руководитель исследования профессор Вэнь-Пин Ши. — В прошлом году, к примеру, из обыкновенной рыболовной лески ученые сконструировали искусственные мышцы, которые оказались в 100 раз мощнее мышечных волокон человека. Однако у всех предложенных технологий создания искусственных мускулов была масса недостатков».

Главной задачей создателей искусственных мышц стала разработка такого материала, который мог бы сгибаться и сокращаться одновременно, как это делают настоящие мышцы. Когда человек принимает классическую позу, чтобы продемонстрировать мышцы руки, его бицепс сокращается и одновременно изгибается, чтобы поднять предплечье.

Группа, возглавляемая профессором Вэнь-Пин Ши и его аспирантом Чин-Чун Ченом, попыталась создать подобную искусственную мышцу. В поисках подходящего материала они обнаружили под микроскопом, что клетки луковой кожицы очень похожи на микроструктуру мышц.

Чистить этот жгучий овощ непросто, тем не менее, ученые сумели снять тонкий слой эпидермальных клеток со свежей очищенной луковицы и промыли его чистой водой. Затем они выкачали из него всю влагу путем сублимационной сушки, не повредив сами клетки. В результате микроструктура стала жесткой и хрупкой, поэтому ученые обработали ее кислотой, чтобы удалить из клеток гемицеллюлозу, которая придает клеточным стенкам прочность, и сделать эту микроструктуру эластичной.