Наноцеллюлоза — набор волокон целлюлозы с шириной волокна от 5 до 20 нм и длиной от 10 нм до нескольких микрон — имеет сходство с обычной целлюлозой, но превосходит ее по многим качествам. Свойства псевдопластичности позволяют материалу вести себя как жидкость при тряске и взбалтывании, а в обычных условиях он становится вязким. Эти свойства позволяют использовать ее для создания сверхлегких и сверхпрочных материалов.
В Лаборатории клеточных и микробных биотехнологий ПГНИУ в сотрудничестве с Институтом экологии и генетики микроорганизмов Уральского отделения РАН впервые получили наноцеллюлозу биотехнологическим путем. Ученые нашли штамм плесневых грибов Aspergillus niger, которые эффективно разрушают лигнин — органическое вещество в стенках растительных клеток. Этот своеобразный клей и выедают грибки, что позволяет получать наноцеллюлозу в 3,5 раза легче и дешевле.
Обычно целлюлоза идет на производство бумаги.
В этих пробирках содержится наноцеллюлоза.
«В качестве сырья для нового материала мы планируем использовать отходы целлюлозно-бумажных комбинатов, которые образуются в больших количествах. Только на территории Пермского края находится более 8 млн. т неутилизированных отходов», — рассказала журналистам сотрудник лаборатории Эльвира Позюмко.
Собственно, речь идет о создании материала, основу которого составляют игловидные кристаллы. Это обусловливает его прочность, которая превосходит нержавеющую сталь. Материал может быть использован в различных отраслях производства — от супергибких экранов до бронежилетов. Пока новая технология находится в экспериментальной стадии. Дело за реализацией проекта в реальном производстве.
Некоторые местные предприятия уже выразили готовность принять участие в разработке технологии…
Разработка пермяков — не единственная в своем роде. Например, воронежские химики А. М. Левина, М. Н. Левин и М. И. Белозерских получили несколько патентов на производство наноцеллюлозы — в частности, из растительного сырья различного происхождения. Но предложенные ими способы требуют сложной химической переработки, состоящей из нескольких стадий. Поэтому многим специалистам кажется более привлекательным способ получения наноцеллюлозы, разработанный тем же профессором Воронежского государственного университета М. Н. Левиным, из свекольного жома, который в изобилии получается при производстве сахара. Новый материал будет использован для изготовления одноразовой посуды и бумажной упаковки, которые, по утверждению разработчика, окажутся раз в 10 прочнее обычных.
Работают с наноцеллюлозой и за рубежом. Британские ученые из института Edinburgh Napier University совместно с сотрудниками бумажной мануфактуры Sappi занимаются разработкой технологии, которая не требует большого количества дорогостоящих химикатов, а также не создает много отходов. Инновационный материал делается путем интенсивной обработки древесной массы, в результате чего высвобождаются настолько мелкие волокна целлюлозы, что внутрь одного человеческого волоса может поместиться около 2 000 таких частиц. Сообщается, что новый материал очень прочен, а кроме того, наноцеллюлоза полностью биоразлагаема.
Во второй половине 2015 года Sappi планирует построить завод для изготовления материала по новой технологии в Австралии, а к 2020 году ожидается, что мировой спрос на такую продукцию составит около 35 млн. т в год.
А вот американские специалисты обнаружили, что наноцеллюлозу производят бактерии чайного гриба. Профессор биологии Малькольм Браун, под руководством которого проводились исследования, считает, что, используя «чайную» технологию, можно начинать производство наноцеллюлозы в промышленных масштабах.
С. СЛАВИН
У ВОИНА НА ВООРУЖЕНИИ
Танки без брони
«Броня крепка и танки наши быстры», — поется в известной песне. Поэт, сочинивший эти строки, вряд ли задумывался, что мощная броня и высокая скорость плохо сочетаются. Конструкторам всякий раз приходится идти на компромисс. Скоростные танки должны быть как можно более легкими, а броня, заметно утяжеляя их, делает танки менее маневренными и более тихоходными.
Сейчас конструкторы выходят из создавшегося положения при помощи так называемой динамической защиты. Суть ее состоит в том, что на корпусе танка размещают металлические контейнеры, содержащие несколько элементов. Каждый элемент состоит из двух слоев взрывчатки и тонкой металлической пластины между ними. Принцип действия защиты состоит в том, что контейнеры со взрывчаткой, навешенные поверх обычной брони, в нужный момент взрываются, выбрасывая навстречу летящему снаряду взрывную волну, сбивающую его или, по крайней мере, ослабляющую удар.