Выбрать главу

Изобретатели полагали, что следует взять не два магнита, а 5, 100 или 1 000, чтобы получилась устойчивая система. Однако практическое решение найти очень долго никому не удавалось. Причину, казалось бы, обнаружили. Еще в 1839 году английский физик С. Ирншоу доказал, что система тел, связанных силовым полем типа электрического или магнитного, но обязательно убывающим обратно пропорционально квадрату расстояния, не может находиться в устойчивом равновесии.

И все же магнитный подвес был создан. В 60-х годах ХХ века в Польше на одной из международных выставок был продемонстрирован большой глобус, висящий в воздухе как бы ни на чем. Это была сенсация, но из нее никто не делал секрета. Глобус был сделан из легкого пластика, а сверху наклеена пластина мягкой стали. Под потолком укрепили электромагнит, лампочку и фотоэлемент. При включении тока электромагнит притягивал глобус, а он при этом пересекал луч фотоэлемента. Возникал сигнал, который тотчас отключал ток от магнита. Глобус начинал падать и переставал загораживать свет. Тогда от фотоэлемента поступал сигнал на включение магнита. Весь процесс проходил настолько быстро, что дергание глобуса вверх-вниз заметить было невозможно.

Магнитный подвес подобного типа применяется и для подвески роторов гироскопов. Вращающийся с огромной скоростью ротор, висящий в вакууме, сохраняет положение своей оси вращения.

Конечно, в гироскопах самолетов и ракет магнитный подвес управляется сложной электронной системой. Однако можно сделать его проще. Это стало возможным благодаря работам физика из Томска Г. В. Николаева. Но из-за сложного математического аппарата кратко изложить его теорию не удастся. Однако эксперименты, положенные в ее основу, могут быть показаны в школе.

Вот один из них. Возьмите два небольших полосовых магнита, например от мебельных защелок, и положите их параллельно, так, чтобы они притягивались. Ничего особенного в том нет. Но если из них собирать магниты более длинные и также укладывать параллельно, то притяжение между ними по мере роста длины будет ослабевать и даже сменится на отталкивание.

Интересный результат получается, когда короткий магнит приближают к длинному. При этом возникает так называемая магнитная потенциальная яма. Суть эффекта заключается в следующем. На большом расстоянии эти два магнита притягиваются. На малом — отталкиваются, но есть такое место, где магниты друг с другом вовсе не взаимодействуют.

Получившаяся устойчивая система из магнитов не противоречит теореме Ирншоу. Ведь здесь расстояния между магнитами малы по сравнению с их размерами. Поэтому силы взаимодействия ослабевают не обратно пропорционально квадрату расстояния, а гораздо медленнее. Но почему сила притяжения одних и тех же магнитов то меняется на отталкивание, то пропадает вообще? Как утверждает Г. В. Николаев, это явление в рамках обычной электродинамики необъяснимо. Оно связано с существованием двух магнитных полей. Одно из них — поле, охватывающее проводник с током, — мы изучаем в школе. У каждого проводника с током, как установил в свое время Анри Ампер, есть еще и слабое продольное магнитное поле. Его современная электродинамика не учитывает, а зря, ведь оно — причина многих явлений, в том числе и описанного. Причем сложности теории не мешают найти потенциальной «магнитной яме» техническое применение.

А вот, к примеру, забавная игрушка. Паровоз тянет за собою 2–3 вагона. Приглядевшись, вы замечаете, что между ними нет ни крючков, ни нитей, лишь маленький зазор. Если вагоны сблизить до упора и отпустить, то они разойдутся. Стоит их растащить, они, напротив, сойдутся вновь. Во всех случаях зазор между вагонами остается благодаря потенциальной «магнитной яме». Такую «яму», предложенную Николаевым, вероятно, можно применить для создания поезда, парящего над рельсами практически без трения. Да мало ли для чего еще!

Если вас заинтересовали парадоксы магнитного поля, то рекомендуем книгу Г. В. Николаева «Непротиворечивая электродинамика, теории, эксперименты, парадоксы» (Томск, 1997).

А мы пока продолжим наши эксперименты.

В Интернете есть видеоролик, наглядно демонстрирующий один из эффектов, основанный на эффекте потенциальной «ямы» Николаева. Возьмите 2 кольцевых магнита диаметром 10–12 см или меньше (например, из радиодинамиков). Соедините их друг с другом с помощью изоляционной ленты, оставив между ними воздушный зазор примерно 3–5 см. Зазор этот жестко удерживается при помощи 3 пластиковых стержней-опор, расположенных по кругу через 120°. Далее смастерите из одного кольцевого магнита диаметром около 5 см и заостренного пластикового стержня волчок.