Выбрать главу

Трудность их работы заключалась в том, что нейтрино крайне слабо взаимодействуют с веществом, через которое проходят. Так, например, каждую секунду через поверхность Земли площадью в 1 см2 (а заодно и сквозь наши тела) проходит около 6x1010 нейтрино, спускаемых Солнцем. Однако их влияние ни мы с вами не ощущаем, ни датчики никак не чувствуют.

Часть этих частиц возникла еще в момент Большого взрыва, другие постоянно рождаются в результате разнообразных процессов, происходящих в космосе и на Земле, — от взрывов сверхновых и гибели крупных звезд до реакций, протекающих на атомных электростанциях. Даже внутри нашего тела каждую секунду рождается около 5 000 нейтрино — это происходит при распаде изотопа калия внутри клеток.

Большая часть тех нейтрино, которые достигают Земли, рождается на Солнце, в результате происходящих там ядерных реакций. Таким образом, после частиц света — фотонов — нейтрино являются самыми распространенными частицами в нашей Вселенной.

Загадка на полвека

Вопрос о природе нейтрино возник после экспериментов американца Раймонда Дэвиса, основанных на хлораргонном методе, предложенном физиком Бруно Понтекорво, много работавшим за границей и в СССР. Механизм рождения их на Солнце давно был известен, термоядерные реакции и их выход, необходимый для того, чтобы Солнце «грело», был просчитан в уравнениях. Но эксперимент показал, что на деле от Солнца приходит всего лишь треть от количества предсказанных частиц.

Физик Бруно Максимович Понтекорво.

Куда деваются остальные? Этот вопрос стоял перед учеными почти пол века, объяснений было несколько.

Одно из них, оказавшееся верным, состояло в том, что нейтрино может превращаться из одного вида в другой — скажем, из электронного в мюонное. Его-то как раз и предложил Б. Понтекорво в 1957 году.

Окончательно решить полувековую загадку помог японский эксперимент с помощью нейтринного детектора Super-Kamiokande. Он представлял собой гигантскую бочку под землей, заполненную дистиллированной водой и пронизанную тысячами фотодетекторов. При бомбардировке космическими частицами земной атмосферы рождается множество вторичных частиц, в том числе нейтрино.

«В этом эксперименте физики научились мерить и электронные, и мюонные нейтрино, но самое главное — они знали направление прихода этих частиц. И зная расстояние до точки, где первичная частица вошла в атмосферу, они видели, как меняется соотношение мюонных и электронных частиц в зависимости от пройденного ими расстояния, — пояснил журналистам суть дела доктор физико-математических наук Андрей Ростовцев, специалист в области элементарных частиц. — То есть они увидели осцилляционную картину и научились предсказывать, если в какой-то точке родилось мюонное нейтрино, сколько электронных и мюонных нейтрино будет в потоке через километр»…

Таким образом, нейтринные осцилляции — это превращения нейтрино одного вида (электронного, мюонного или тау-нейтрино) в частицы другого вида или далее в антинейтрино. Открытие было сделано практически одновременно на двух детекторах — уже упомянутом Super-Kamiokande (Япония), где работал Такааки Кадзита, и в нейтринной обсерватории в Садбери (Канада), где трудился Артур Макдональд.

Оба лауреата, как отмечает Нобелевский комитет, внесли определяющий вклад в проведение подобных экспериментов.

Выше скорости света?

Через некоторое время выяснилось, что и скорость передвижения нейтрино тоже точно не известна. Некоторые исследователи даже предположили, что эти частицы движутся со… сверхсветовой скоростью!

Первые сообщения о регистрации мюонных нейтрино, движущихся со сверхсветовой скоростью, появились 23 сентября 2011 года. Тогда удалось установить, что нейтрино из одной точки приходят в другую в среднем на 60 наносекунд раньше расчетного времени. То есть получалось, что частицы движутся с 1,0000248 световой скорости.

Теоретики скептически отнеслись к этим данным, поскольку, согласно теории относительности, ни одна материальная частица не может иметь скорость выше световой. Споры велись довольно долго. Одни экспериментаторы настаивали на правильности своих измерений, другие говорили о возможной ошибке и перепроверке результатов. В конце концов, выяснилось, что права все-таки теория относительности. И ошибка в измерениях вышла из-за плохого соединения оптоволоконного кабеля, подводящего внешний GPS-сигнал в экспериментальную установку. Из-за этого время пролета частиц измерялось неправильно.