Выбрать главу

Например согласно Калуце электромагнитные взаимодействия представляют собой пульсации гравитационного скалярного поля, действующего в невидимом нами пятом дополнительном измерении.

Разумеется, наука всегда стремилась выявить родство и взаимосвязь различных видов сил в природе. Исторически первой единой теорией поля были уравнения Максвелла, созданные им в 50-х годах XIX в. Эти уравнения объединили электрические и магнитные силы в единую теорию электромагнитных взаимодействий.

Важным свойством этой теории является наличие в ней калибровочной симметрии. Например, если электрический заряд движется в электрическом поле, то затрачиваемая им энергия зависит только от разности потенциалов между конечной и начальной точками его движения. При этом если к системе приложить дополнительное постоянное напряжение, то энергия, затрачиваемая на перемещение электрического заряда в поле, не изменится.

Любая симметрия является отражением какого-либо закона сохранения. При калибровочной симметрии происходит “калибровка”, т. е. изменения масштаба, однако при этом сохраняются все пропорции и соотношения между различными элементами системы.

Эта симметрия, известная также под названием калибровочной инвариантности, была обнаружена очень давно — еще со времен первых исследований электромагнитных явлений. Однако вначале ей не придавали большого значения.

Затем интерес к ней пробудился, особенно после работ немецкого физика Германа Вейля (“крестного отца” этого типа симметрии). Однако лишь после успехов в создании теории объединенного электрослабого взаимодействия и квантовой хромодинамики — теории сильного взаимодействия — среди специалистов возникло убеждение, что калибровочная инвариантность и есть основной динамический принцип при создании единой теории поля (магистральный путь объединения всех взаимодействий в природе).

Теодор Франц Эдуард (1885–1955)

Сравнительно недавно существовала лишь одна калибровочная теория — квантовая электродинамика. Объединение в 1967 году слабого и электромагнитного взаимодействия (теория Глешоу-Вайнберга-Салама) привело к тому, что рассматриваемая ранее изолированно некалибровочная теория слабого взаимодействия оказалась лишь частью целого — красивой калибровочной теории электрослабого взаимодействия. В 70-х годах была создана калибровочная теория сильного ядерного взаимодействия на базе объединения теории кварков М.Гелмана и Г.Цвейга с калибровочными уравнениями Ч.Янга и Ф.Милса.

В 1954 г. работающие в США физики Ч.Янг и Ф.Милс создали новый тип уравнений, описывающих безмассовые ноля на основе калибровочного принципа.

Но поскольку единственной в те времена известной безмассовой частицей-переносчиком взаимодействия был фотон — основная частица электромагнитного взаимодействия, то уравнения Янга-Милса посчитали физико-математической экзотикой. Однако позже оказалось, что теория Янга-Милса составляет основу интерпретации взаимодействия кварков. По аналогии с квантовой электродинамикой она получила название квантовой хромодинамики. Замена “электро” на “хромо” объясняется тем, что кварки (как и любые сильно взаимодействующие внутри нуклонов частицы) обладают “цветовым” (chromo) зарядом. Подобно тому, как электроны и протоны характеризуются электрическим зарядом.

С появлением квантовой хромодинамики возникли реальные предпосылки для создания единой теории калибровочных полей электрослабых и сильных взаимодействий. В 1973 г. Шелдон Гленшоу и Говард Джоржи первые выдвинули подобную теорию — Теорию Великого объединения (ТВО).

М. Гелман (род. 15 сентября 1929)

Шелдон Глашоу (род. 5 декабря 1932)

Говард Джоржы; (род. 1947)

Итак, квантовая электродинамика, теория электрослабого взаимодействия, квантовая хромодинамика и ТВО базируются на принципе калибровочной инвариантности. Именно поэтому калибровочная симметрия является базисом будущей единой теории всех взаимодействий, включая и гравитационное.

Второй основой единой теории является многомерность взаимодействий. Хотя идея многомерности и была введена Калуцей в научную практику еще в 1921 г., но затем о ней основательно забыли. Ее исключительно эффективная реставрация произошла лишь через полстолетия, в середине 70-х годов, после появления теории суперсимметрии — теории, которая объединила все существующие взаимодействия в природе, включая гравитацию.