Теория суперсимметрии — это последнее достижение, венчающее долгий поиск единства в физике. Единства не только различных силовых полей, но и вещества. Она дает ответ: как объединить все четыре фундаментальных взаимодействия в едином силовом поле; как объяснить существование всех фундаментальных частиц и как устроен параллельный мир, его свойства и взаимоотношения с нашим миром. На все эти вопросы она дает исчерпывающие ответы.
Физики, которые пытались объединять гравитацию с другими фундаментальными взаимодействиями, пришли к захватывающему предсказанию: у каждой фундаментальной материальной частицы должна существовать и массивная, материальная “тень” этой частицы, выступающая в роли партнера. Это родство между материальными частицами и получило название суперсимметрии.
До сегодняшнего дня ни одна суперсимметричная частица еще не найдена, но в настоящее время проводятся опыты в ЦЕРНе и в Фермиевском институте, с помощью которых могли бы подтверждаться суперсимметричные частицы
Все фундаментальные взаимодействия и частицы объединяются в ней на базе использования всеобъемлющей калибровочной симметрии — суперсимметрии. Причем фундаментальные частицы описываются суперсимметрией и поэтому необходимы для ее поддержания. Все частицы “реального” мира имеют суперпартнеров, отличающихся от них спинами (разница составляет L/2). Вместе они составляют суиерсиммегричный мир, состоящий из обычного мира обычных частиц и мира параллельного нашему “реальному” миру. Слово “реальный” взято здесь в кавычки, поскольку и параллельный мир частиц-суперпартнеров также реален (хотя и невидим), как и мир обычных частиц.
Математически суперсимметрия объединяет глобальную калибровочную симметрию с дополнительными измерениями, а физически соответствует превращению фермиона в бозон и наоборот. Следует пояснить, что фермионами в физике называют частицы, которые имеют полуцелый спин. Все кварки и лептоны имеют спин, равный 1/2, и относятся к фермионам. К другому классу частиц относятся бозоны — частицы, которые либо вообще не имеют спина (т. е. их спин равен нулю), как, например, частица Хиггса, либо имеют целочисленный спин. К последним наряду с фотоном относятся W- и Z-бозоны (все они имеют спин 1) и гравитон (спин 2).
Принципиальные различия в физических свойствах фермионов и бозонов связаны с тем, что все переносчики взаимодействий — бозоны, тогда как кварки и лептоны — ферм ионы. Поэтому бозоны принято ассоциировать с полем, а фермионы с веществом. Разумеется, в нашем реальном мире между ними существуют кардинальные различия. Однако теоретики считают, что в начале эволюции Вселенной, в первые минуты ее рождения существовали такие огромные температуры, что бозоны и фермионы постоянно превращались друг в друга. В настоящее время такие переходы невозможны.
Оба мира, наш и суперсимметричный параллельный (суперпараллельный), никак не взаимодействуют между собой. Для их взаимодействия необходимы общие переносчики. Например, чтобы увидеть суперпараллельный мир, наш глаз должен воспринимать “фотино”, которые излучает “Солнце” параллельного мира.
Суперпартнеры ферм ионов нашего мира имеют спин 0, и их названия образуются из названий обычных частице помощью приставки “с”. Например, электрон и кварки со спинами 1/2 имеют суперпартнеров с нулевым спином — сэлекгрон и скварки соответственно. Суперпартнеры бозонов, имеющие спин 1/2, получили свои названия путем добавления суффикса “ино” к корню названия обычной частицы. Например, суперпартнером фотона будет частица со спином 1/2 — фотино. Глюону соответствует — глюино, W-бозону — вино и Z-бозону — зино. Таким образом, в мире суперпартнеров существует полный исчерпывающий набор частиц и полей.
При этом, согласно принципу суперсимметрии, всуперсимметричном параллельном мире между частицами и полями сохраняются те же соотношения, что и между частицами и полями реального мира. Суперпараллельный мир никак не взаимодействует с нашим, поскольку не существует общих переносчиков взаимодействий. Его свойства проявляются только в скрытых от нас суперпараллельных измерениях. В определенном смысле это является дальнейшим развитием теории Калуцы о существовании дополнительных измерений.
До возникновения суперсимметрии физические теории рассматривались лишь как модели, которые приближенно описывают реальность. По мере совершенствования этих моделей согласие теории с реальностью улучшалось. Теперь же большинство физиков уверено, что суперсимметрия и есть сама реальность, что эта модель идеально согласуется с реальным миром. Ее создание впервые позволило включить в единое поле гравитацию, описание которой на языке суперсимметрии получило название “супергравитации”. От обычной гравитации она отличается тем, что здесь наряду с гравитоном — обычным переносчиком гравитационного взаимодействия со спином 2 — существует в суперпараллельном мире “гравитино”, частица со спином 3/2.