Выбрать главу

Следующая разновидность электронной бумаги называется Gyricon. Она представляет собой тонкий слой полиэтилена с множеством микроскопических шариков, рассеянных по поверхности слоя (рис. 2).

Рис 2. Принцип работы электронной бумаги Gyricon

Они находятся в заполненных жидкой субстанцией впадинах, где могут свободно вращаться. Каждый раскрашен в два цвета, чаще всего — в черный и белый. Шарики обладают электрическим зарядом и реагируют на электромагнитное поле, обращаясь к наблюдателю в каждый момент какой-то одной стороной. На листе цифровой бумаги может образовываться любая комбинация двух цветов, в зависимости от определенного электромагнитного поля на его поверхности. Это изображение остается до тех пор, пока не будет создано другое электромагнитное поле.

Третий вид основан на так называемом электросмачивании. Каждый пиксель электронной бумаги — это взвешенная в водянистой среде капелька масла, которая в обычных условиях растекается по всей ячейке, образуя под действием сил поверхностного натяжения пленку на воде. Если же создать электрическое поле достаточной величины, масло начнет собираться в каплю, освобождая при этом больше половины водной поверхности (рис 3).

Рис 3. Принцип работы электронной бумаги на электросмачивании

Подложка-электрод выполнена из водоотталкивающего материала, так что масло прилипает к ней, а после исчезновения напряжения тут же растекается обратно. Ячейки разделены перегородками толщиной около 5 мкм (тоже примерно толщина человеческого волоса), а сверху вся эта конструкция герметично закрыта слоем стекла с напыленным вторым электродом. Поэтому дисплей пока получается не гибким, а жестким. Однако разработчики утверждают, что вместо стекла удастся использовать полимерные пленки, и тогда экран можно будет сворачивать в трубочку и класть в карман.

При отсутствии напряжения получается темная точка, поскольку масляная пленка плохо отражает падающий свет, а при его подаче — светлая, так как масло освобождает подавляющее большинство поверхности. И чем выше прилагаемое напряжение, тем сильнее сжимается капелька «чернил», что сулит огромные возможности по передаче градаций серого. Быстродействие такой ячейки составляет примерно 12 миллисекунд. Что касается разрешающей способности экрана, то она напрямую зависит от размера ячеек, а тут перспективы весьма радужны: уже на стадии предварительных испытаний была опробована матрица с разрешением 160 dpi. В принципе реально и получение полноцветного изображения при использовании четырех субпикселов, окрашенных по стандарту CMYK (полиграфический стандарт наложения четырех красок: синий, пурпурный, желтый и черный).

Эта модель в отличие от электрофоретической применима благодаря высокой частоте смены кадров и для просмотра видео. Однако для поддержки изображения ей требуется постоянное питание — правда, довольно скромное. Коммерческие поставки таких дисплеев голландская компания Philips планирует начать уже к 2010 году.

Принцип работы четвертого подвида бумаги на первый взгляд довольно прост. На отражающий слой наночастиц диоксида титана-3 (химического соединения, придающего белоснежность обычным бумажным листам) наносится электрохромный слой из виологена (прозрачного полимера с нанопористой структурой), который под действием электрического заряда способен терять прозрачность, достигая при этом уровня насыщенного темно-синего цвета. Пространство между диоксидом титана и виологеном заполнено специальным электролитом (рис. 4).

Рис 4. Принцип работы электронной бумаги NanoChromics

Дисплей, созданный на основе этой «бумаги», называется NanoChromicsDisplay (NCD) «Выключенный» экран выглядит белым, а при подаче напряжения на определенные участки формируется изображение с хорошей контрастностью. Его углы обзора составляют по 180°, а благодаря значительной мобильности пигментного слоя на основе электрохромных наночастиц достигается высокая частота смены кадров (до 60 кадров в секунду). К тому же NCD нетребовательны к температурным условиям: настольные часы на их основе работают и при -35, и при +80 °C.

Пятый вид основан на холестерических жидких кристаллах, которые, в отличие от традиционных, обеспечивают меньшее потребление энергии, стабильность и высокую отражательную способность. Их молекулы расположены в форме спирали, в зависимости от осевого направления которой падающий свет отражается или поглощается. Изменение этого аксиального направления обеспечивается посредством приложенного к кристаллам напряжения. Именно этот принцип использовала компания Fujitsu в своей версии электронной бумаги, которую представила в июле 2005 года. Она состоит из трех слоев холестерических жидких кристаллов. Каждый слой содержит пиксели определенного цвета — красного, синего или зеленого (цветовая схема RGB), а четвертый, находящийся поверх предыдущих, защищает их от возможных повреждений и предотвращает искажения картинки при изгибе пластины бумаги. Образец имеет диагональ 3,8 дюйма и толщину 0,8 мм (в будущем она может еще уменьшиться). Количество отображаемых цветов и оттенков пока не слишком велико и составляет 512. Для поддержания картинки электронная бумага Fujitsu не требует постоянного питания — энергия расходуется только в момент изменения изображения. Потребляемая мощность представленного прототипа в десятки раз ниже, чем у обычных мониторов. Кроме того, она гнется, а изображение не блекнет в отраженном свете, то есть при нормальном дневном освещении.