Выбрать главу

Измеряя температуру этого реликтового электромагнитного излучения, пришедшего к нам с разных направлений на небе, мы узнаем, какие области были теплее или холоднее (а значит, плотнее или разреженнее), чем в среднем по Вселенной, а главное — насколько они были теплее или холоднее. Результат этих измерений состоит в том, что Вселенная в возрасте 300 тыс. лет была гораздо более однородной, чем сегодня: вариации температуры и плотности составляли тогда менее 10-4 (0,01 %) от средних значений. Тем не менее, эти вариации существовали: с разных направлений электромагнитное излучение приходит с несколько различной температурой. Это показано на рис. 3, где изображено распределение температуры по небесной сфере (фотоснимок ранней Вселенной) за вычетом средней температуры 2,725 градусов Кельвина; более холодные области показаны синим, более теплые — красным цветом.

Фотоснимок, изображенный на рис. 3, привел к нескольким важным и неожиданным выводам. Во-первых, он позволил установить, что наше трехмерное пространство с хорошей степенью точности евклидово: сумма углов треугольника в нем равна 180 градусов даже для треугольников со сторонами, длины которых сравнимы с размером видимой части Вселенной, т. е. сравнимы с 14 млрд. световых лет. Вообще говоря, общая теория относительности допускает, что пространство может быть не евклидовым, а искривленным; наблюдательные же данные свидетельствуют, что это не так (по крайней мере для нашей области Вселенной).

Во-вторых, из фотоснимка рис. 3 можно установить, какова была величина (амплитуда) неоднородностей температуры и плотности в ранней Вселенной — она составляла 10-4-10-5 от средних значений. Именно из этих неоднородностей плотности возникли галактики и скопления галактик: области с более высокой плотностью притягивали к себе окружающее вещество за счет гравитационных сил, становились еще более плотными и в конечном итоге образовывали галактики.

Поскольку начальные неоднородности плотности известны, процесс образования галактик можно рассчитать и результат сравнить с наблюдаемым распределением галактик во Вселенной. Этот расчет согласуется с наблюдениями, только если предположить, что помимо обычного вещества во Вселенной имеется другой тип вещества — темная материя, вклад которой в полную плотность энергии сегодня составляет около 25 %.

Другой этап эволюции Вселенной соответствует еще более ранним временам, от 1 до 200 секунд (!) с момента Большого Взрыва, когда температура Вселенной достигала миллиардов градусов. В это время во Вселенной происходили термоядерные реакции, аналогичные реакциям, протекающим в центре Солнца или в термоядерной бомбе. В результате этих реакций часть протонов связалась с нейтронами и образовала легкие ядра — ядра гелия, дейтерия и лития-7. Количество образовавшихся легких ядер можно рассчитать, при этом единственным неизвестным параметром является плотность числа протонов во Вселенной (последняя, разумеется, уменьшается за счет расширения Вселенной, но ее значения в разные времена простым образом связаны между собой).

Произведя расчет и сравнив результаты с наблюдаемым количеством легких элементов во Вселенной, приходим к выводу, что общая теория относительности и известные законы ядерной физики правильно описывают Вселенную в возрасте 1-200 секунд, когда вещество в ней имело температуру миллиард градусов и выше. Для нас важно, что все эти данные приводят к выводу о том, что обычное вещество вкладывает всего 5 % в полную плотность энергии во Вселенной.

4. Баланс энергий в современной Вселенной

Итак, доля обычного вещества (протонов, атомных ядер, электронов) в суммарной энергии в современной Вселенной составляет всего 5 % (при этом вещества в звездах еще в 10 раз меньше; обычное вещество находится в основном в облаках газа). Помимо обычного вещества во Вселенной имеются и реликтовые нейтрино — около

300 нейтрино всех типов в кубическом сантиметре. Их вклад в полную энергию (массу) во Вселенной невелик, поскольку массы нейтрино малы, и составляет заведомо не более 3 %. Оставшиеся 90–95 % полной энергии во Вселенной — «неизвестно что». Более того, это «неизвестно что» состоит из двух фракций — темной материи и темной энергии, как изображено на рис. 4.

5. Темная материя

Темная материя сродни обычному веществу в том смысле, что она способна собираться в сгустки (размером, скажем, с галактику или скопление галактик) и участвует в гравитационных взаимодействиях так же, как обычное вещество. Скорее всего, она состоит из новых, не открытых еще в земных условиях частиц.