Выбрать главу

С другой стороны, все больше людей в мире понимает, что в пользовательском секторе «гнать гигагерцы» — уже практически бессмысленно. Вычислительные мощности пользовательских компьютеров дошли до той ступени, когда дальнейшее их увеличение просто лишено какой-либо перспективы: все эти плезиозавры народу… может, и нужны, но далеко не всем, не всегда, и затраченных на них средств разработчика просто не оправдывают.

Еще несколько лет Inlel может продержаться на том, что будет заливать в уши производителей компьютерных игр и заядлых игроков мед и мармелад, «толкая» им многогигагерцевые процессоры (в планах — 20 гигагерц до конца десятилетия), но что потом?

Бернард Коул призывает перейти на многозначную логику как можно скорей

Двузначная логика подобна езде по Манхэттену с условием ехать либо только прямо, либо с правым поворотом. Троичная логика способна обеспечить движение и налево, и прямо, и направо. И теперь, мало того, что Вы можете добраться куда-то потенциально быстрее, но и попасть в места, которых Вы вообще не могли достигнуть прежде. В троичной логике мы будем работать с 729 коммутативными функциями в противоположность 8 в двоичной логике. Хотя большинство, вероятно, не всегда будут выгодны.

Один из барьеров на пути троичной и более многозначных логик — то, что для демонстрации их выгоды чаше всего используются арифметические примеры. Это, конечно, очень важно, но много инженеров и не конструируют арифметические цепи вычислений. Лично я обращаю внимание на приложения вроде обработки троичных и многоуровневых сигналов — как на наиболее многообещающую область для таких логик. Если бы я имел время я разработал бы игру вроде Ханойских Башен или Nimh в троичной или четверичной логической схеме и сравнил бы это с двоичной разработкой.

Если выгоды будут притягательны, то сложность троичной логики не будет

решающим фактором на пути ее применения для ведущих инженеров. И я надеюсь, что они снова обратят взгляд в прошлое, на некоторые идеи и концепции уже ранее обсуждавшиеся, но затем незаслуженно отправленные в мусорную корзину при движении по путям, направленным к достижению гигагерцевых тактовых частот и процессоров из многих миллионнов транзисторов. Это не были плохие идеи, но это были лишь идеи, которые не вписывылись в тогдашние потребности рынка. Однако времена меняются, меняются и запросы рынка.

Не так давно в рамках проекта ITRS уже состоялась встреча представителей, на которой был рассмотрен вопрос о различных добавлениях к уже принятому плану 2003 года, вроде совместной договоренности о развитии технологий беспроводного обмена данными. Среди этих добавлений, которые, скорее всего будут одобрены и приняты, как уже говорилось — технологии беспроводного обмена данными, базирующиеся на использовании полупроводниковых кремний-германиевых, арсенид-галлиевых и фосфид-индиевых элементов, которые могут обеспечить работу на тактовых частотах, приближающихся к 100 ГГц. Эти добавления очень важны для будущих беспроводных технологий обмена данными, поскольку это позволит достичь скоростей передачи данных, эквивалентных возможности проводного Интернета или даже превышающих их.

Лично я нахожу упоминание кремний-германиевых элементов наиболее интересным и многообещающим аспектом этого плана, учитывая как они подходят для использования многозначной логики. Помимо улучшения рабочих характеристик, чему в плане уделено наибольшее внимание, наибольшее значение может иметь тот факт, что подобно элементам, основанным на сочетаниях GaAs, GaAsP, InP и других экзотических комбинациях, полупроводниковые приборы, построенные на сочетании SiGe являются гетеропереходными, т. е. органически способными к образованию множества пороговых уровней.

Теоретически, SiGe-элементы могут быть использованы для создания устройств, работающих вне простой бинарной логики — 0/1, включить-выключить. Такие элементы способны создавать несколько легко различимых уровней сигнала. Это может быть использовано для аппаратной реализации 3-мерных, 4-мерных и даже большеразмерных логических функций, что эффективно увеличит информационную плотность устройств без дальнейшего уплотнения транзисторной структуры. Эти перспективы весьма достойны пристального внимания, поскольку на пути уплотнения транзисторной структуры мы сейчас приближаемся к нанометровому диапазону, где уже сталкиваемся с проблемой значительного удорожания технологического оборудования и, что даже более существенно, с квантовыми неопределенностями.