Верхний пахотный слой земли на приусадебном участке — это одна из самых больших ценностей крестьянского двора. Слой чернозема наращивается трудом нескольких поколений, и именно слой чернозема имеет решающее значение в получении урожая. Раскрытие и прокладка коммуникаций в крестьянском дворе, как правило, производится под дорогами, так как рытье канав связано с перемешиванием грунта, а следовательно, и потерей плодородного слоя. Заземлители молниеотводов, во избежание шагового поражения людей, должны располагаться в стороне от пешеходных дорожек, а следовательно, на земле, которая может быть использована для выращивания различных культур, в силу чего разрытие должно быть минимальным. Этим требованиям удовлетворяет заземляющее устройство с вертикальными заземлителями.
Основной электрической характеристикой заземлителя является сопротивление растеканию тока. Предположим, что в земле находится электрод и через него происходит замыкание на землю (рис. 6).
Рис. 6. Растекание тока от единичного электрода заземлителя
Вокруг электрода образуется электрическое поле и зона повышенных потенциалов, которые по мере удаления от электрода уменьшаются и на расстоянии 20 м становятся близкими к 0. Это явление называется растеканием тока. В зоне растекания тока находиться опасно. Как показано на рис. 6, передние ноги лошади находятся ближе к заземлителю, в зоне потенциала V2, а задние ноги — под потенциалом V1. Лошадь в данном случае является сопротивлением, к которому приложена разность потенциалов V2 - V1. В результате по лошади (через передние ноги, тело лошади и задние ноги) будет протекать ток, сила которого равна J = (V2 — V1)/R лошади, что может вызвать поражение электрическим током, называемое напряжением шага.
Зная величину удельного сопротивления грунта и длину электродов, можно, пользуясь приближенной формулой из таблицы 5, определить сопротивление растеканию одиночного электрода.
Искусственные заземлители, как правило, состоят из нескольких электродов, соединенных между собой проводниками. В том случае, если исключить их взаимное влияние друг на друга, расстояние между ними в заземлении должно быть не менее 25 м. Чем ближе находятся электроды один от другого, тем в большей степени сказывается их взаимное влияние. Для учета взаимного влияния электродов устанавливается коэффициент использования заземлителей.
В таблице б приведены коэффициенты использования вертикальных электродов, размещенных в ряд.
Сопротивление заземлителей при растекании тока молнии называется импульсным, и его определяют по формуле:
Rи = R∙aи
где:
R — сопротивление заземлителей при низкой частоте и малых плотностях токов на поверхности — при токах промышленной частоты;
aи — импульсный коэффициент; Rи — сопротивление заземлителей при растекании тока молнии — импульсное сопротивление.
Импульсное сопротивление непосредственному измерению не поддается, поэтому его оценивают косвенно по сопротивлению при промышленной частоте Rи и импульсному коэффициенту аи. Но импульсный коэффициент аи зависит от удельного сопротивления земли. Он тем меньше, чем больше удельное сопротивление грунта. Значение импульсного коэффициента аи в зависимости от удельного сопротивления грунта при вертикальных электродах представлено в таблице 7.
Связь между сопротивлениями при импульсе и промышленной (низкой) частоте представлена в таблице 8.
Пример 3. Необходимо определить величину сопротивления заземлителей на промышленной частоте для присоединения к нему импульсного заземлителя с сопротивлением 40 Ом∙р = 500 Ом∙м.
Решение. Импульсному заземлителю величиной 40 Ом соответствует заземлитель, рассчитанный по переменному току, сопротивление которого равно 60 Ом. В качестве технических способов электрозащиты в сельском доме применяются зануление и молниезащита. В ряде случаев требуется повторное заземление нулевого провода. Его необходимо выполнять на концах воздушных линий или ответвлениях длиной более 200 м, а также на вводах в здания, установки которых подлежат заземлению. Сопротивление каждого из повторных заземлителей на линиях 380/220 В — 30 Ом.