(23.9)
Вспомните, что это поле появилось от изменения Е1 . А правильное магнитное поле будет создаваться изменением суммарного электрического поля Е1+Е2 . Если магнитное поле представить в виде В=В1+В2 , то второе слагаемое — это просто добавочное поле, создаваемое полем Ег. Чтобы узнать В2 , надо повторить все те же рассуждения, которые приводились, когда подсчитывали В1: контурный интеграл от B2 вдоль кривой Г1 равен скорости изменения потока Е2 через Г1. Опять получится то же уравнение (23.4), но В в нем надо заменить на В2 , а Е — на E2:
Поскольку Е2 с радиусом меняется, то для получения его потока надо интегрировать по круговой поверхности внутри Г1 . Беря в качестве элемента площади 2prdr, напишем этот интеграл в виде
Значит, В2(r) выразится так:
(23.10)
Подставляя сюда Е2(r) из (23.7), получаем интеграл от r3dr, который равен, очевидно, r4/4. Наша поправка к магнитному полю окажется равной
(23.11)
Но мы еще не кончили! Раз магнитное поле В вовсе не такое, как мы сперва думали, то мы, значит, неверно подсчитывали Е2. Надо найти еще поправку к Е, вызываемую добавочным магнитным полем В2. Эту добавочную поправку к электрическому полю назовем Е3. Она связана с магнитным полем В2 так же, как E2 была связана с В1. Можно опять прибегнуть к тому же самому соотношению (23.6), изменив в нем только индексы:
(23.12)
Подставляя сюда наш новый результат (23.11), получаем новую поправку к электрическому полю:
(23.13)
Если теперь наше дважды исправленное поле записать в виде Е=Е1+Е2+Е3, то мы получим
(23.14)
Изменение электрического поля с радиусом происходит уже не по параболе, как было на фиг. 23.5; на больших радиусах значение поля лежит чуть выше кривой (E1+E2).
Мы пока еще не дошли до конца. Новое электрическое поле вызовет новую поправку к магнитному полю, а заново подправленное магнитное поле вызовет необходимость дальнейшей поправки к электрическому и т. д. и т. д. Но у нас уже есть все нужные формулы. Для В3можно использовать (23.10), изменив индексы при В и Е с 2 до 3.
Очередная поправка к электрическому полю равна
С этой степенью точности все электрическое поле дается, стало быть, формулой
где численные коэффициенты написаны в таком виде, что становится ясно, как продолжить ряд.
Окончательно получается, что электрическое поле между обкладками конденсатора на любой частоте дается произведением E0eiwt на бесконечный ряд, который содержит только переменную wr/с. Можно, если мы захотим, определить специальную функцию, обозначив ее через J0(x), как бесконечный ряд в скобках формулы (23.15):
Тогда искомое решение есть произведение E0eiwt на эту функцию при x=wr/c:
(23.17)
Мы обозначили нашу специальную функцию через J0 потому, что, естественно, не мы первые с вами занялись задачей колебаний в цилиндре. Функция эта появилась давным-давно, и ее уже привыкли обозначать J0. Она всегда возникает, когда вы решаете задачу о волнах, обладающих цилиндрической симметрией. Функция J0 по отношению к цилиндрическим волнам — это то же, что косинус по отношению к прямолинейным волнам. Итак, это очень важная функция. И изобретена она очень давно. Затем с нею связал свое имя математик Бессель. Индекс нуль означает, что Бессель изобрел целую кучу разных функций, а наша — самая первая из них.