Выбрать главу

Предположим, что w действительно меньше wc; тогда можно написать

(24.21)

где k' — действительное положительное число

(24.22)

Если теперь вернуться к нашей формуле (24.12) для Еy, то надо будет написать

(24.23)

что можно также представить в виде

(24.24)

Это выражение приводит к полю Е, которое во времени колеб­лется как eiwt, a no z меняется как e±k'z. Оно плавно убывает или возрастает с z, как всякая действительная экспонента. В нашем выводе мы не думали о том, откуда взялись волны, где их источник, но, конечно, где-то в волноводе он должен быть. И знак, который стоит при k', должен быть таков, чтобы поле убывало при удалении от источника волн.

Итак, при частотах ниже wсpс/а волны вдоль трубы не рас­пространяются; осциллирующее поле проникает в трубу лишь на расстояние порядка i/k'. По этой причине частоту wсназы­вают «граничной частотой» волновода. Глядя на (24.22), мы ви­дим, что для частот чуть пониже wc число k' мало, и поля могут проникать в трубу довольно далеко. Но если со намного меньше wс, коэффициент k' в экспоненте равняется p/а, и поле отмирает чрезвычайно быстро (фиг. 24.7). Поле убывает в е раз на расстоя­нии а/p, т. е. на трети ширины волновода. Поля проникают в волновод на очень малое расстояние от источника.

Мы хотим еще раз подчеркнуть эту характерную черту на­шего анализа прохождения волн по трубе — появление мнимого волнового числа kz. Когда, решая уравнение в физике, мы полу­чаем мнимое число, то это обычно ничего физического не озна­чает. Для волн, однако, мнимое волновое число действительно нечто означает. Волновое уравнение по-прежнему удовлетво­ряется; оно только означает, что решение приводит к экспоненциально убывающему полю вместо распространяющихся волн

Фиг. 24.7. Изменение Еy с ро­стом z при w<<wc.

Итак, если в любой задаче на волны k при какой-то частоте ста­новится мнимым, это означает, что форма волны меняется — синусоида переходит в экспоненту.

§ 4. Скорость волн в волноводе

Та скорость волн, о которой мы пока говорили,— это фа­зовая скорость, т. е. скорость узлов волны; она есть функция частоты. Если подставить (24.17) в (24.18), то можно написать

(24.25)

Для частот выше граничной (для которых бегущая волна суще­ствует) wc/w меньше единицы, vфаз— действительное число, боль­шее скорости света. Мы уже видели в гл. 48 (вып. 4), что фазовые скорости, большие скорости света, возможны, потому что это просто движутся узлы волн, а не энергия и не информация. Чтобы узнать, как быстро движутся сигналы, надо подсчитать быстроту всплесков или модуляций, вызываемых интерферен­цией волн одной частоты с одной или несколькими волнами слегка иных частот [см. гл. 48 (вып. 4)]. Скорость огибающей такой группы волн мы назвали волновой скоростью; это не w/k, a dw/dk:

(24.26)

Дифференцируя (24.17) по w и переворачивая, чтобы полу­чить dw/dk, получаем

(24.27)

Это меньше скорости света.

Среднее геометрическое между vфази vгр в точности равно с — скорости света:

(24.28)

Это любопытно, ведь сходное соотношение мы встречали и в квантовой механике. У частицы с любой скоростью (даже у релятивистской) импульс р и энергия U связаны соот­ношением