Предположим, что w действительно меньше wc; тогда можно написать
(24.21)
где k' — действительное положительное число
(24.22)
Если теперь вернуться к нашей формуле (24.12) для Еy, то надо будет написать
(24.23)
что можно также представить в виде
(24.24)
Это выражение приводит к полю Е, которое во времени колеблется как eiwt, a no z меняется как e±k'z. Оно плавно убывает или возрастает с z, как всякая действительная экспонента. В нашем выводе мы не думали о том, откуда взялись волны, где их источник, но, конечно, где-то в волноводе он должен быть. И знак, который стоит при k', должен быть таков, чтобы поле убывало при удалении от источника волн.
Итак, при частотах ниже wс—pс/а волны вдоль трубы не распространяются; осциллирующее поле проникает в трубу лишь на расстояние порядка i/k'. По этой причине частоту wсназывают «граничной частотой» волновода. Глядя на (24.22), мы видим, что для частот чуть пониже wc число k' мало, и поля могут проникать в трубу довольно далеко. Но если со намного меньше wс, коэффициент k' в экспоненте равняется p/а, и поле отмирает чрезвычайно быстро (фиг. 24.7). Поле убывает в е раз на расстоянии а/p, т. е. на трети ширины волновода. Поля проникают в волновод на очень малое расстояние от источника.
Мы хотим еще раз подчеркнуть эту характерную черту нашего анализа прохождения волн по трубе — появление мнимого волнового числа kz. Когда, решая уравнение в физике, мы получаем мнимое число, то это обычно ничего физического не означает. Для волн, однако, мнимое волновое число действительно нечто означает. Волновое уравнение по-прежнему удовлетворяется; оно только означает, что решение приводит к экспоненциально убывающему полю вместо распространяющихся волн
Фиг. 24.7. Изменение Еy с ростом z при w<<wc.
Итак, если в любой задаче на волны k при какой-то частоте становится мнимым, это означает, что форма волны меняется — синусоида переходит в экспоненту.
§ 4. Скорость волн в волноводе
Та скорость волн, о которой мы пока говорили,— это фазовая скорость, т. е. скорость узлов волны; она есть функция частоты. Если подставить (24.17) в (24.18), то можно написать
(24.25)
Для частот выше граничной (для которых бегущая волна существует) wc/w меньше единицы, vфаз— действительное число, большее скорости света. Мы уже видели в гл. 48 (вып. 4), что фазовые скорости, большие скорости света, возможны, потому что это просто движутся узлы волн, а не энергия и не информация. Чтобы узнать, как быстро движутся сигналы, надо подсчитать быстроту всплесков или модуляций, вызываемых интерференцией волн одной частоты с одной или несколькими волнами слегка иных частот [см. гл. 48 (вып. 4)]. Скорость огибающей такой группы волн мы назвали волновой скоростью; это не w/k, a dw/dk:
(24.26)
Дифференцируя (24.17) по w и переворачивая, чтобы получить dw/dk, получаем
(24.27)
Это меньше скорости света.
Среднее геометрическое между vфази vгр в точности равно с — скорости света:
(24.28)
Это любопытно, ведь сходное соотношение мы встречали и в квантовой механике. У частицы с любой скоростью (даже у релятивистской) импульс р и энергия U связаны соотношением