Выбрать главу

или

(25.12)

Теперь можно вычислить раmрbmв лабораторной системе. В этой системе четырехвектор рам= а, ра), а рbm=(М, 0), ибо он описывает покоящийся протон. Итак, раmрbmдолжно быть рав­но МЕа, а мы знаем, что скалярное произведение — это инвари­ант, поэтому оно должно быть равно значению, найденному нами в (25.12). В результате получается

Полная энергия падающего протона должна быть по мень­шей мере равна (что составляет около 6,6 Гэв, так как М=938 Мэв) или после вычитания массы покоя М получаем, что кинетическая энергия должна быть равна по меньшей мере 6 М (около 5,6 Гэв). Именно с тем, чтобы иметь возможность производить антипротоны, бетатрон в Беркли проектировался на кинетическую энергию ускоренных протонов около 6.2 Гэв.

Скалярное произведение — инвариант, поэтому полезно знать его величину. Что, например, можно сказать о «длине» четырехвектора скорости umum?

т. е. um — единичный четырехвектор.

§ 3. Четырехмерный градиент

Следующей величиной, которую нам следует обсудить, яв­ляется четырехмерный аналог градиента. Напомним (см. гл. 14, вып. 1), что три оператора дифференцирования д/дх, д/ду, d/dz преобразуются подобно трехмерному вектору и назы­ваются градиентом. Та же схема должна работать и в четырех измерениях; по простоте вы можете подумать, что четырехмер­ным градиентом должны быть (d/dt, д/дх, д/ду d/dz), но это неверно.

Чтобы обнаружить ошибку, рассмотрим скалярную функ­цию, которая зависит только от х и t. Приращение j при малом изменении t на Dt и постоянном х равно

(25.13)

С другой стороны, с точки зрения движущегося наблюда­теля

Используя уравнение (25.1), мы можем выразить Dх' и Dt' через Dt. Вспоминая теперь, что величина х постоянна, так

что Dx=0, мы пишем

Таким образом,

Сравнивая этот результат с (25.13), мы узнаем, что

(25.14)

Аналогичные вычисления дают

(25.15)

Теперь вы видите, что градиент получился довольно странным. Выражения для х и t через х' и t' [полученные решением уравнений (25.1)] имеют вид

Именно так должен преобразовываться четырехвектор. Но в уравнениях (25.14) и (25.15) знаки получились неправильными! Выход в том, что надо заменить неправильное определение четырехмерного оператора градиента (d/dt,С) правильным:

Мы его обозначим Сm . Для такого Сm трудности исчезают, и он ведет себя так, как подобает настоящему четырехвектору. (Ужасно неприятно наличие минусов, но так уж устроено в мире.) Разумеется, говоря, что Сm «ведет себя как четырехвектор», мы подразумеваем, что четырехмерный градиент ска­лярной функции есть четырехвектор. Если j — настоящее ска­лярное (лоренц-инвариантное) поле, то Сmj будет четырехвекторным полем.

Итак, все уладилось. Теперь у нас есть векторы, градиенты и скалярное произведение. Следующий на очереди — инвари­ант, аналогичный дивергенции в трехмерном векторном ана­лизе. Ясно, что аналогом его должно быть выражение Сmbm, где bmвекторное поле, компоненты которого являются функ­циями пространства и времени. Мы определим дивергенцию четырехвектора bm=(bt, b) как скалярное произведение Сm на bm:

где С·b — обычная трехмерная дивергенция вектора b. Не забы­вайте внимательно следить за знаками. Один знак минус свя­зан с определением скалярного произведения [формула (25.7)1, а другой возникает от пространственных компонент Сm [форму­ла (25.16)]. Дивергенция, определяемая формулой (25.7), есть инвариант, и для всех систем координат, отличающихся друг от друга преобразованием Лоренца, применение ее приводит к одинаковой величине.