или
(25.12)
Теперь можно вычислить раmрbmв лабораторной системе. В этой системе четырехвектор рам= (Еа, ра), а рbm=(М, 0), ибо он описывает покоящийся протон. Итак, раmрbmдолжно быть равно МЕа, а мы знаем, что скалярное произведение — это инвариант, поэтому оно должно быть равно значению, найденному нами в (25.12). В результате получается
Полная энергия падающего протона должна быть по меньшей мере равна 1М (что составляет около 6,6 Гэв, так как М=938 Мэв) или после вычитания массы покоя М получаем, что кинетическая энергия должна быть равна по меньшей мере 6 М (около 5,6 Гэв). Именно с тем, чтобы иметь возможность производить антипротоны, бетатрон в Беркли проектировался на кинетическую энергию ускоренных протонов около 6.2 Гэв.
Скалярное произведение — инвариант, поэтому полезно знать его величину. Что, например, можно сказать о «длине» четырехвектора скорости umum?
т. е. um — единичный четырехвектор.
§ 3. Четырехмерный градиент
Следующей величиной, которую нам следует обсудить, является четырехмерный аналог градиента. Напомним (см. гл. 14, вып. 1), что три оператора дифференцирования д/дх, д/ду, d/dz преобразуются подобно трехмерному вектору и называются градиентом. Та же схема должна работать и в четырех измерениях; по простоте вы можете подумать, что четырехмерным градиентом должны быть (d/dt, д/дх, д/ду d/dz), но это неверно.
Чтобы обнаружить ошибку, рассмотрим скалярную функцию, которая зависит только от х и t. Приращение j при малом изменении t на Dt и постоянном х равно
(25.13)
С другой стороны, с точки зрения движущегося наблюдателя
Используя уравнение (25.1), мы можем выразить Dх' и Dt' через Dt. Вспоминая теперь, что величина х постоянна, так
что Dx=0, мы пишем
Таким образом,
Сравнивая этот результат с (25.13), мы узнаем, что
(25.14)
Аналогичные вычисления дают
(25.15)
Теперь вы видите, что градиент получился довольно странным. Выражения для х и t через х' и t' [полученные решением уравнений (25.1)] имеют вид
Именно так должен преобразовываться четырехвектор. Но в уравнениях (25.14) и (25.15) знаки получились неправильными! Выход в том, что надо заменить неправильное определение четырехмерного оператора градиента (d/dt,С) правильным:
Мы его обозначим Сm . Для такого Сm трудности исчезают, и он ведет себя так, как подобает настоящему четырехвектору. (Ужасно неприятно наличие минусов, но так уж устроено в мире.) Разумеется, говоря, что Сm «ведет себя как четырехвектор», мы подразумеваем, что четырехмерный градиент скалярной функции есть четырехвектор. Если j — настоящее скалярное (лоренц-инвариантное) поле, то Сmj будет четырехвекторным полем.
Итак, все уладилось. Теперь у нас есть векторы, градиенты и скалярное произведение. Следующий на очереди — инвариант, аналогичный дивергенции в трехмерном векторном анализе. Ясно, что аналогом его должно быть выражение Сmbm, где bm — векторное поле, компоненты которого являются функциями пространства и времени. Мы определим дивергенцию четырехвектора bm=(bt, b) как скалярное произведение Сm на bm:
где С·b — обычная трехмерная дивергенция вектора b. Не забывайте внимательно следить за знаками. Один знак минус связан с определением скалярного произведения [формула (25.7)1, а другой возникает от пространственных компонент Сm [формула (25.16)]. Дивергенция, определяемая формулой (25.7), есть инвариант, и для всех систем координат, отличающихся друг от друга преобразованием Лоренца, применение ее приводит к одинаковой величине.