Фиг. 26.2. Движение заряда по произвольной траектории.
Потенциалы в точке (х, у, z) в момент t определяются положением Р' и скоростью v' в запаздывающий момент t'— t-r' /с. Их удобно выражать через координаты относительно «проекционного» положения Pпр (истинным положением в момент t является точка Р).
Следовательно, все явления электродинамики можно вывести либо из уравнений Максвелла, либо из следующего ряда замечаний. (Запомните их на случай, если вы вдруг очутитесь на необитаемом острове. Исходя из них, можно восстановить все. Преобразования Лоренца вы, конечно, помните. Не забывайте их ни на необитаемом острове, ни в каком-либо другом месте.)
Во-первых, Аm — четырехвектор. Во-вторых, кулонов потенциал любого покоящегося заряда равен q/4pe0r. В-третьих, потенциал, созданный зарядом, движущимся произвольным образом, зависит только от положения в запаздывающий момент времени. Из этих трех фактов вы можете получить все. Из того, что Аm ~ четырехвектор, мы преобразованием кулонова потенциала, который известен, получим потенциал заряда, движущегося с постоянной скоростью. Затем из последнего утверждения, что потенциал зависит только от скорости в запаздывающий момент, мы, используя проекционное положение, можем их найти. Правда, это не очень-то удобный способ рассмотрения, но интересно убедиться в том, что законы физики можно сформулировать множеством самых различных способов.
Иногда кое-кто безответственно заявляет, что вся электродинамика может быть получена только из преобразований Лоренца и закона Кулона. Это, конечно, совершенно неверно. Мы прежде всего должны предположить, что у нас имеются скалярный и векторный потенциалы, которые в совокупности образуют четырехвектор. Это говорит нам, как преобразуются потенциалы. Затем, откуда нам известно, что необходимо учитывать только эффект в запаздывающий момент? Или, еще лучше, почему потенциал зависит только от положения и скорости и не зависит, например, от ускорения? Ведь поля Е и В зависят все-таки и от ускорения. Если вы попытаетесь применить те же рассуждения к ним, то будете вынуждены признать, что они зависят только от положения и скорости в запаздывающий момент. Но тогда поле ускоряющегося заряда было бы таким же, как и поле от заряда в проекционном положении, а это неверно. Поля зависят не только от положения и скорости вдоль траектории, но и от ускорения. Так что в «великом» утверждении, что все можно получить из преобразования Лоренца, содержится еще несколько неявных дополнительных предположений. (Всегда, когда вы слышите подобное эффектное утверждение, что нечто большое можно построить на основе малого числа предположений,— ищите ошибку. Обычно неявно принимается довольно много такого, что оказывается далеко не очевидным, " если посмотреть внимательнее.)
§ 2. Поля точечного заряда, движущегося с постоянной скоростью
Итак, мы нашли потенциалы точечного заряда, движущегося с постоянной скоростью. Для практических целей нам нужно найти поля. Равномерно движущиеся заряды попадаются буквально на каждом шагу, скажем проходящие через камеру Вильсона космические лучи или даже медленно движущиеся электроны в проводнике. Так что давайте хотя бы посмотрим, как выглядят эти поля для любых скоростей заряда, даже для скоростей, близких к скорости света, но предположим при этом, что ускорение вообще отсутствует. Это очень интересный вопрос.
Поля мы будем находить по обычным правилам, исходя из потенциалов
Возьмем сначала Ez:
Но компонента Azравна нулю, а дифференцирование выражения (26.1) для j дает
(26.2)
Аналогичная процедура для Еуприводит к
(26.3)
Немного больше работы с x-компонентой. Производная от j более сложна, да и Ахне равна нулю. Давайте сначала вычислим —дj/дх:
(26.4)
А затем продифференцируем Ахпо t:
(26.5)
И, наконец, складывая их, получаем
(26.6)
Бросим на минуту заниматься полем Е, а сначала найдем В. Для его z-компоненты мы имеем