что представляет четырехмерное скалярное произведение, то в ней мы приобретаем настоящий скаляр и можем пользоваться им для измерения четырехмерного интервала. Исходя из величины As или ее предела ds, мы можем определить параметр
Хорошим четырехмерным оператором будет и производная по s, т. е. d/ds, так как она инвариантна относительно преобразований Лоренца.
Для движущейся частицы ds легко связывается с dt. Для точечной частицы
(26.30)
а
Таким образом, оператор
есть инвариантный оператор. Если подействовать им на любой четырехвектор, то мы получим другой четырехвектор. Например, если мы действуем им на (ct, x, у, z), то получаем четырехвектор скорости
Теперь мы видим, почему Ц(l-v2/c2)поправляет дело.
Инвариантная переменная s — очень полезная физическая величина. Ее называют «собственным временем» вдоль траектории частицы, ибо в системе, в любой момент движущейся вместе с частицей, ds просто равно интервалу времени. (В этой системе Dx=Dy=Dz=0, a Ds=Dt.) Если вы представите себе часы, скорость хода которых не зависит от ускорения, то, двигаясь вместе с частицей, такие часы будут показывать время s.
Теперь можно вернуться назад и записать закон Ньютона (подправленный Эйнштейном) в изящной форме:
(26.32)
где fm определяется формулой (26.28). Импульс же рmможет быть записан в виде
(26.33)
где координаты xm=(ct, х, у, z) описывают теперь траекторию частицы. Наконец, четырехмерные обозначения приводят нас к очень простой форме уравнений движения:
(26.34)
напоминающей уравнения F=ma. Важно отметить, что уравнения (26.34) и F=ma — вещи разные, ибо четырехвекторная форма уравнения (26.34) содержит в себе релятивистскую механику, которая при больших скоростях отличается от механики Ньютона. Это абсолютно непохоже на случай уравнений Максвелла, где нам нужно был о переписать уравнения в релятивистской форме, совершенно не изменяя их смысла, а изменяя лишь обозначения.
Вернемся теперь к уравнению (26.24) и посмотрим, как в четырехвекторных обозначениях записывается правая часть.
Три компоненты F, поделенные на Ц(1-v2/c2), составляют пространственные компоненты fm , так что
Теперь мы должны подставить все величины в их релятивистских обозначениях. Прежде всего c/Ц(1-v2/c2), vy/Ц(1-v2/c2) и vz/Ц(1-v2/c2) представляют t-, у- и z-компоненты 4-скорости um. Компоненты же Е и В входят в электромагнитный тензор второго ранга Fmv. Отыскав в табл. 26.1 компоненты Fmv, соответствующие Ех, Вги Вv , получим
здесь уже начинает вырисовываться что-то интересное. В каждом слагаемом есть индекс х, и это разумно, ибо мы находим х-компоненту силы. Все же остальные индексы появляются в парах tt, yy, zz — все, кроме слагаемого с хх, которое куда-то делось. Давайте просто вставим его и запишем
Этим мы ничего не изменили, так как благодаря антисимметрии Fmvслагаемое Fxxравно нулю. Причиной же нашего желания восстановить его является возможность сокращенной записи уравнения (26.36):