Теперь вы видите, что мы почти у цели. Одно из наших слагаемых — настоящая производная no t, ее мы используем при образовании и, а другое (превосходная дивергенция) войдет в S. К несчастью, справа в середине осталось еще одно слагаемое, которое не является ни дивергенцией, ни производной по t. Так что пока еще не все закончено. После некоторых размышлений мы опять обращаемся к уравнениям Максвелла и, к счастью, обнаруживаем, что (СXE) равно —dB/dt.
Это позволяет превратить дополнительный член в чистую производную чего-то по времени:
Вот теперь у вас получилось то, что нужно. Уравнение для энергии переписывается в виде
А это, если мы определим u и S как
(27.14)
и
(27.15)
в точности напоминает уравнение (27.6). (Перестановкой сомножителей в векторном произведении мы добиваемся правильного знака.)
Итак, наша программа успешно выполнена. Из выражения для плотности энергии мы видим, что она представляет сумму «электрической» и «магнитной» плотностей энергии, которые в точности равны выражениям, полученным нами в статике, когда мы находили выражение для энергии через поля. Кроме того, мы получили выражение для вектора потока энергии электромагнитного поля. Этот новый вектор S=e0c2EXB по имени своего первооткрывателя называется «вектором Пойнтинга». Он говорит нам о скорости, с которой энергия движется в пространстве. Энергия, протекающая в секунду через малую поверхность da, равна S·nda, где n — вектор, перпендикулярный к поверхности da. (Теперь, когда у нас есть формулы для u и S, можете, если хотите, забыть все выкладки.)
§ 4. Неопределенность энергии поля
Прежде чем заняться некоторыми приложениями формул Пойнтинга [т. е. выражений (27.14) и (27.15)], я хотел бы заметить, что на самом деле мы их не «доказали». Все, что мы сделали,— это нашли только возможное u и возможное S. Но откуда же нам известно, что, покрутив формулами, мы не придем к другому выражению для u и другому выражению для S? Новое S и новое и будут отличаться от старых, но по-прежнему будут удовлетворять уравнению (27.6). Такое вполне может случиться. Однако в формулы, которые получаются при этом, всегда входят различные производные полей (причем это всегда члены второго порядка типа второй производной или квадрата первой производной). Для u и S можно фактически написать бесконечное число различных выражений, и до сих пор никто не думал над экспериментальной проверкой того, которое же из них истинное. Люди полагают, что простейшее выражение, по-видимому, и должно быть истинным, но надо сознаться, что мы так и не знаем, как же на самом деле распределена энергия в электромагнитном поле. Пойдем по тому же легчайшему пути и постулируем, что энергия поля определяется выражением (27.14). При этом вектор потока S должен задаваться уравнением (27.15).
Самое интересное то, что единого способа избавиться от неопределенности энергии поля, по-видимому, вообще нет. Иногда утверждают, что эту проблему можно разрешить, используя теорию гравитации; при этом приводятся такие доводы. В теории гравитации источником гравитационного притяжения является вся энергия. Поэтому если нам известно, какие гравитационные силы действуют на свет, то можно правильно определить плотность энергии электричества. До сих пор, однако, такими тонкими экспериментами, которые позволили бы точно определить гравитационное влияние на электромагнитное поле, никто не занимался. Впрочем, установлено, что свет при прохождении около Солнца отклоняется, поэтому мы можем говорить, что Солнце притягивает к себе свет. Во всяком случае, найденные нами выражения для электромагнитной энергии и потока всегда всеми признавались. И хотя иногда результаты, полученные с их использованием, казались странными, никто никогда не обнаружил в них чего-то невероятного, какого-то расхождения с экспериментом. Согласимся со всеми и будем считать, что, по-видимому, здесь все в порядке.
Мне хотелось бы сделать еще одно замечание о формуле для энергий. Прежде всего формула для энергии поля в единице объема очень проста — это сумма электрической и магнитной энергий, если электрическую энергию мы определим как Е2, а магнитную — как В2. Эти выражения были найдены нами как возможные выражения для энергии при рассмотрении статических задач. Кроме него, мы нашли для энергии электростатического поля и несколько других выражений, например j, которое в электростатическом случае равно интегралу от Е·Е. Однако в электродинамическом случае это равенство нарушается, и нет критерия, позволяющего установить, которая из формул правильна. Но теперь мы это знаем. Аналогично, мы нашли выражение для магнитной энергии, которое верно в самом общем случае.